Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3
\(E=x^2+y^2-4x-2y+2003\)
\(= \left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1998\) \(=\left(x-2\right)^2+\left(y-1\right)^2+1998\ge1998\)
Vậy: Min E = 1998 khi \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(F=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)\(=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=\left(x^2+3x\right)\left(x^2+3x+2\right)\) (1)
Đặt: \(x^2+3x=t\) \(\Rightarrow x^2+3x+2=t+2\) thay vào phương trình (1) ta có:
\(t\left(t+2\right)=t^2+2t=t^2+2t+1-1=\left(t+1\right)^2-1\) \(=\left(x^2+3x+1\right)^2-1\ge-1\)
Vậy: Min F = -1 khi x=1
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
1) Nhờ sự trợ giúp đắc lực từ máy tính casio ta tìm được ngay kết quả
\(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)=4\forall x\).Đã có kết quả,nhưng bài làm vẫn là thứ không thể thiếu:
Ta có: \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-\left(4x+6\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-2x\left(4x+6\right)+5\left(4x+6\right)\)
\(=4x^2+6x+9+4x^2+10x+25-8x^2+12x+20x+30=4\) (tới bước này mình tính ngoài giấy nháp rồi ra kết quả luôn nhé)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a) (x3 + 8y3) : (2y + x)
= (x + 2y)(x2 - 2xy + 4y2) : (2y + x)
= x2 - 2xy + 4y2
b) (x3 + 3x2y + 3xy2 + y3) : (2x + 2y)
= (x + y)3 : 2(x + y)
= \(\dfrac{\left(x+y\right)^2}{2}\)
c) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= 3x3y2(2x2 - 3xy + 5y2) : 3x3y2
= 2x2 - 3xy + 5y2
a)Bt = (x2-a2)-(2x-2a)
=....
b)Bấm máy tìm nghiệm đi rồi phân tích
c);d);e);f)Nhóm số đầu vs số thứ 2, số thứ 3 vs số thứ 4
\(f\left(x;y\right)=\frac{1}{2}\left(4x^4-4x^2+1\right)+\left(y^2-2y+1\right)-\frac{3}{2}\)
\(=\frac{1}{2}\left(2x^2-1\right)^2+\left(y-1\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2=\frac{1}{2}\\y=1\end{matrix}\right.\)