K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Gọi ƯCLN(3n+1;4n+1)=d

Ta có: 3n+1 chia hết cho d

=>4(3n+1) chia hết cho d

12n+4 chia hết cho d

có 4n+1 chia hết cho d

=>3(4n+1) chia hết cho d

12n+3 chia hết cho d

=>12n+4-(12n+3) chia hết cho d

1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+1;4n+1)=1

Vậy với mọi nEN thì 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau

24 tháng 11 2014

Gọi ƯCLN(3n+4;n+1) là d.

=>3n+4 chia hết cho d và n+1 chia hết cho d.

=>3.(n+1) chia hết cho d

=>3n+4    ___________d và 3n+3 chia hết cho d

=>(3n+4)-(3n+3) chia hết cho d

=>1 chia hết cho d

=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.

 

28 tháng 12 2016

Gọi d là ƯC (n + 1; 3n + 4) Nên ta có :

n + 1 ⋮ d và 3n + 4 ⋮ d

<=> 3 (n + 1) ⋮ d và 3n + 4 ⋮ d

<=> 3n + 3 ⋮ d và 3n + 4 ⋮ d

=> (3n + 4) - (3n + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC (n + 1; 3n + 4) = 1 nên n + 1 và 3n + 4 là NT cùng nhau ( dpcm )

Ý 2 tương tự

28 tháng 12 2016

gọi ước chung lớn nhất của n+1 và 3n+4 là d 

ta có n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+ 3 chia  hết cho d

3n+4 chia hết cho d

=> 3n+4 - ( 3n + 3) chia hết cho d

=> 3n +4 - 3n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

vậy..............

12 tháng 1 2018

Gọi ƯCLN (4n+3;5n+1) = d ( d thuộc N sao )

=> 4n+3 và 5n+1 đều chia hết cho d

=> 5.(4n+3) và 4.(5n+1) chia hết cho d

=> 20n+15 và 20n+4 đều chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1;11}

Mà a và b ko phải 2 số tự nhiên nguyên tố cùng nhau nên d khác 1

=> d = 11

=> ƯCLN (a,b) =11

Tk mk nha

12 tháng 1 2018

Ta có; 4n+3=> 5.[4n+3]=>20n+15                                                             Gọi UCLN(a, b) là d

           5n+1=>4.[5n+1]=> 20n+4

=>d= [20n+15 ] - [  20n+4] chia hết cho 11

=>d=11 [ vì a,b là 2 số thuộc N ko nguyên tố cùng nhau]

           

10 tháng 2 2017

là 7 đó bạn