Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8^x.16^{-2x}=4^5=>\frac{8^x.1}{16^{2x}}=4^5=>\frac{8^x}{256^x}=4^5=>\frac{1}{32^x}=4^5=>4^5.32^x=1=>2^{10}.2^{5x}=1\)
\(2^{10+5x}=1=>10+5x=0=>5x=-10=>x=-2\)
\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
\(\left(x-1\right)\left(x+5\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\left(x-1\right)\left(x+5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-5< x< 1\)
câu dễ tự làm
\(\Rightarrow x>-5;x< -5\)
a: \(\dfrac{5^5}{5^x}=5^{18}\)
=>5-x=18
hay x=-13
b: \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Leftrightarrow2^{4-x}=\left(2^5\right)^6\cdot\left(2^4\right)^5=2^{30+20}=2^{50}\)
=>4-x=50
hay x=-46
c: \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Leftrightarrow2^{2x-3}=2^9\cdot2^{20}\cdot2^{20}=2^{49}\)
=>2x-3=49
=>2x=52
hay x=26
d: \(\dfrac{2^3}{2^x}=4^5\)
\(\Leftrightarrow2^{3-x}=2^{10}\)
=>3-x=10
hay x=-7
e: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)
\(\Leftrightarrow5^x=5^6\)
hay x=6
f: \(7\cdot2^x=2^9+5\cdot2^8\)
\(\Leftrightarrow2^x\cdot7=2^8\cdot7\)
\(\Leftrightarrow2^x=2^8\)
hay x=8
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
\(8^x.16^{-2x}=4^5\)
\(\Leftrightarrow8^x.8^{-2x}.2^{-2x}=4^5\)
\(\Leftrightarrow8^{x+\left(-2x\right)}.2^{-2x}=\left(2^2\right)^5\)
\(\Leftrightarrow8^{-x}=2^{10}:2^{-2x}\)
\(\Leftrightarrow8^{-x}=2^{10-\left(-2x\right)}=2^{10+2x}\)
\(\Leftrightarrow\left(2^3\right)^{-x}=2^{10+2x}\)
\(\Leftrightarrow2^{-3x}=2^{10+2x}\)
\(\Leftrightarrow-3x=10+2x\)
\(\Leftrightarrow5x=-10\)
\(\Leftrightarrow x=-2\)
Vậy : \(x=-2\)