Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\), dấu bằng xảy ra khi và chỉ khi a,b cùng dấu.
Có \(\left|x-3\right|+\left|3x+4\right|=\left|3-x\right|+\left|3x+4\right|\ge\left|\left(3-x\right)+\left(3x+4\right)\right|=\left|2x+7\right|\)
Vì 2x+7>2x+1\(\Rightarrow\left|2x+7\right|>\left|2x+1\right|\)---> Dấu bằng không thể xảy ra---> Phương trình vô nghiệm.
b) +) Xét x>0 => 2x+3>0\(\Rightarrow\hept{\begin{cases}\left|x\right|=x\\\left|2x+3\right|=2x+3\end{cases}}\)
Đề bài tương đương với
Tiếp câu b nha (nãy bấm nhầm gửi lun :))
Đề bài tương đương \(x-\left(2x+3\right)=x-1\Leftrightarrow x=-1\)(Loại vì xét x>0)
+) Xét \(\frac{-3}{2}< x\le0\Rightarrow\hept{\begin{cases}\left|x\right|=-x\\\left|2x+3\right|=2x+3\end{cases}}\)
Đề bài tương đương với \(-x-\left(2x+3\right)=x-1\Leftrightarrow x=\frac{-1}{2}\)(Nhận)
+) Xét \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}\left|x\right|=-x\\\left|2x+3\right|=-\left(2x+3\right)\end{cases}}\)
Đề bài tương đương với \(-x+\left(2x+3\right)=x-1\Leftrightarrow3=-1\)(Vô nghiệm)
Vậy nhận nghiệm x=-1/2
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)