K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

\(a,\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}\)

\(\text{Suy ra: }\frac{a+b}{c+a}=\frac{a}{c}\Rightarrow c.\left(a+b\right)=a.\left(c+a\right)\Rightarrow ac+bc=ac+a^2\)

=>a2=bc

b)Viết đề rõ lại giúp

22 tháng 9 2019

Ta có: \(a_2^2=a_1.a_3\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\) ;  \(a_3^2=a_2.a_4\)\(\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)(1)

Lại có: \(\frac{a_1^3}{a_2^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

10 tháng 1 2016

minh thay bai nay kho qua

7 tháng 10 2016

Ta có:

\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)

6 tháng 10 2016

vt rõ đề đi

31 tháng 12 2015

cách làm như thế này có đúng không nhỉ ? nếu đúng thì tích cho mik nhé !

31 tháng 12 2015

a2^2= a1.a3            (c )

a3^2=a2.a4             (d) 

từ (c) và (d) suy ra : a1/a2=a2/a3=a3/a4

=> (a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1/a2.a2/a3.a3/a4= a1/a4

mặt khác :(a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1^3/a2^3= a2^3/a3^3=a3^3/a4^3

= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3             

từ đó suy ra : a1/a4= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3   

1 tháng 2 2017

Đáp án :-5