Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
\(\left|2x\right|+2x=0\)
\(\Rightarrow\left|2x\right|=-2x\)
\(\Rightarrow2x\le0\)
\(\Rightarrow x\le0\)
Vậy \(x\le0\)
\(\left(x-1\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(\left|x-3\right|+x-3=0\)
\(\left|x-3\right|=-x+3\)
\(\left|x-3\right|=-\left(x-3\right)\)
\(\Rightarrow x-3\le0\)
\(\Rightarrow x\le3\)
Vậy \(x\le3\)
\(\left(x+1\right)^3=\left(x+1\right)^5\)
\(\left(x+1\right)^5-\left(x+1\right)^3=0\)
\(\left(x+1\right)^3.\left[\left(x+1\right)^2-1\right]=0\)
\(\orbr{\begin{cases}\left(x+1\right)^3=0\\\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)hoặc \(x=-2\)
Vậy \(x\in\left\{-1;0;-2\right\}\)
\(\left(x-2\right)^3=2^9\)
\(\left(x-2\right)^3=\left(2^3\right)^3\)
\(\Rightarrow x-2=2^3\)
\(x=8+2\)
\(x=10\)
Vậy \(x=10\)
Câu 6 tương tự câu 4
Tham khảo nhé~
P/S: nên chia nhỏ đăng thành nhiều bài khác nhau
1: Vì x^2 >=0 với mọi x ; (y- 1/10)^4 >=0 với mọi y
==> x^2 + (y- 1/10)^4 >= 0.
Do đó dấu = xảy ra tức là x^2 + (y- 1/10)^4 =0 <=> x^2 =0 và (y- 1/10)^4 =0 <=> x=0; y=1/10
bài 2 kiểu tương tự nha
(x - 1 )^4sẽ \(0\le\left(x-1\right)^4\)
(y+2)^100 sẽ \(0\le\left(y+2\right)^{100}\)
đến đó bn làm nhé
a) Vì \(x^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0;y-\dfrac{1}{10}=0\)
\(\Rightarrow x=0;y=\dfrac{1}{10}\)
b) Vì \(\left(x-1\right)^4\ge0\forall x\)
\(\left(y+2\right)^{100}>0\forall y\)
\(\Rightarrow\left(x-1\right)^4+\left(y+2\right)^{100}\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0;y+2=0\)
\(\Rightarrow x=1;y=-2\)
Ta có " (x - 5)7 = (x - 5)4
=> (x - 5)7 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)3 - 1] = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^3-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^3=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-5=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
x2 + (x - 5)2 = 0
x2 ; (x - 5)2 >/ = 0
=> x2 = (x-5)2 = 0
x = x - 5 (vô lí)
\(a,\left(7x-11\right)^3=2^5.5^2+200.\)
\(\left(7x+11\right)^3=32.25+200.\)
\(\left(7x+11\right)^3=800+200.\)
\(\left(7x-11\right)^3=1000.\)
\(\left(7x-11\right)^3=10^3.\)
\(\Rightarrow7x-11=10.\)
\(\Rightarrow x=\left(10+11\right):3=7\in Z.\)
Vậy.....
\(b,3^x+25=26.2^2+2.3^0.\)
\(3^x+25=26.4+2.\)
\(3^x+25=104+2.\)
\(3^x+25=106.\)
\(3^x=106-25.\)
\(3^x=81.\)
\(3^x=3^4\Rightarrow x=4\in Z.\)
Vậy.....
\(c,2^x+3.2=64.\)(có vấn đề).
\(d,5^{x+1}+5^x=750.\)
\(5^x.5^1+5^x+1=750.\)
\(5^x\left(5^1+1\right)=750.\)
\(5^x\left(5+1\right)=750.\)
\(5^x.6=750.\)
\(5^x=750:6.\)
\(5^x=125.\)
\(5^x=5^3\Rightarrow x=3\in Z.\)
Vậy.....
\(e,x^{15}=x.\)
\(\Rightarrow x\left(x^{14}-1\right)=0\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right..\)
\(f,\left(x-5\right)^4=\left(x-5\right)^6.\)
\(\Leftrightarrow\left(x-5\right)^4-\left(x-5^6\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left[1-\left(x-5\right)^2\right]=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left(1-x+5\right)\left(1+x-5\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left(6-x\right)\left(x-4\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4=0\Rightarrow x-5=0\Rightarrow x=5\in Z.\)
\(6-x=0\Rightarrow x=6\in Z.\)
\(x-4=0\Rightarrow x=4\in Z.\)
Vậy.....
\(\left(2x+1\right)^4=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
ne ban minh biet cau tra loi nhung lam the nao bam ngoac vuong
a) \(\left(x^2-4\right)\left(x^2-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=2^2\\x^2=3^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=\pm3\end{matrix}\right.\)
b) \(\left(x^2-4\right)\left(x^2-9\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4\ge0;x^2-9\le0\\x^2-4\le0;x^2-9\ge0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2\ge4;x^2\le9\\x^2\le4;x^2\ge9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4\le x^2\le9\left(tm\right)\\9\le x^2\le4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2\in\left\{4;5;...;9\right\}\)
\(\Rightarrow x\in\left\{\pm2;\pm\sqrt{5};...;\pm3\right\}\).
a) ( x2 - 4 ) . ( x2 - 9 ) = 0
=> \(\left[{}\begin{matrix}x^2-4=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x^2=4\\x^2=9\end{matrix}\right.\)
= > \(\left[{}\begin{matrix}x=-2\\x=2\\x=3\\x=-3\end{matrix}\right.\)
Ta có : ( x2 +4)(x2 - 4) = 0 (*)
Vì x2 + 4 > 0 , \(\forall x\) => (*) <=> \(x^2-4=0\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ........