Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì :
a^2; b^2 là số chính phương
a,b không chia hết cho 3
Nên a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (1)
Ta có :
(a^2 - 1) - (b^2 - 1) = (a - 1)(a + 1) - (b - 1)(b + 1) chia hết cho 8 (2)
Vì :
(a - 1); (a + 1)(a - 1); (a + 1) là 2 số chẵn liên tiếp
(b - 1); (b + 1)(b - 1), (b + 1) là 2 số chẵn liên tiếp
Từ (1), (2)
=> a^2 - b^2 chia hết cho 3.8
=> a^2 - b^2 chia hết cho 24
Theo đề bài, ta có: \(p^2+a^2=b^2\Rightarrow p^2=b^2-a^2=\left(b+a\right)\left(b-a\right)\)(1)
Vì p là số nguyên tố nên \(p^2\)có 3 ước là \(1;p;p^2\)(2)
Từ (1) và (2) suy ra có 3 khả năng có thể xảy ra là:
Khả năng 1: \(\hept{\begin{cases}b+a=1\\b-a=p^2\end{cases}}\). Điều này không thể xảy ra vì p > 3 nên \(p^2>9\Rightarrow b-a>9>1=b+a\Rightarrow-2a>0\)vô lí vì a nguyên dương
Khả năng 2: \(\hept{\begin{cases}b+a=p\\b-a=p\end{cases}}\Rightarrow b+a=b-a\Rightarrow2a=0\Rightarrow a=0\)(Loại vì a nguyên dương, không thể bằng 0)
Khả năng 3: \(\hept{\begin{cases}b+a=p^2\left(3\right)\\b-a=1\left(4\right)\end{cases}}\)
Lấy (3) - (4), ta được: \(2a=p^2-1=\left(p+1\right)\left(p-1\right)\)
Vì p là số nguyên tố lớn hơn 3 (*) nên p không chia hết cho 3 nên \(p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\)
\(\Rightarrow2a⋮3\)mà \(\left(2,3\right)=1\)nên \(a⋮3\)(**)
Từ (*) suy ra p lẻ nên \(p-1\)và \(p+1\)là hai số chẵn liên tiếp
Đặt \(p-1=2k\left(k\inℕ,k>1\right)\)thì \(p+1=2k+2\Rightarrow\left(p-1\right)\left(p+1\right)=4k\left(k+1\right)\)
Vì \(k\left(k+1\right)\)là tích của hai số nguyên liên tiếp nên \(k\left(k+1\right)⋮2\)suy ra \(4k\left(k+1\right)⋮8\)
hay \(2a⋮8\Rightarrow a⋮4\)(***)
Từ (**) và (***) suy ra \(a⋮12\)do \(\left(3,4\right)=1\)(đpcm)
Vì \(2a=p^2-1\Rightarrow2\left(p+a+1\right)\) \(=2p+2a+2=2p+p^2-1+2=p^2+2p+1=\left(p+1\right)^2\)là số chính phương (đpcm)
Ta chứng minh như sau:
+ Khi a và b là 2 số nguyên dương chia hết cho 3, thì tồn tại 2 số nguyên dương p và q sao cho:
- a = 3 p và b = 3q. Lúc đó: a^ 2 + b^2 = (3p)^2 + (3q)^2 = 9.p^2 + 9.q^2 = 3[ 3.p^2 + 3.q^2] = 3.H, với H là số tự nhiên.
Suy ra: a^2 + b^2 là số chia hết cho 3
Giải:
\(^{a^2-b^2}\)=(\(a^2\)-1)-(\(b^2\)-1)
\(a^2\)là số chính phương lẻ chia 8 dư1\(\rightarrow\)\(a^2\)-1\(⋮\)8 (1)
\(a^2\)là số chính phương lẻ chia 3 dư 1\(\rightarrow\)\(a^2\)\(⋮\)3 (2)
Từ (1) (2) =>\(a^2\)-1\(⋮\)24
Tương tự: \(b^2\)-1\(⋮\)24\(\rightarrow\)đpcm