Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R(x)=x4+2x3-x2+x-3
Với x=1 ta có
R(x)=1+2-1+1-3=0
Với x=2 ta có
R(x)=16+16-4+2-3=27
Với x=-1 ta có
R(x)=1+(-2)-1+1-3=-4
Với x=0 ta có
R(x)=0+0-0+0-3=-3
Vậy chỉ có 1 là nghiệm cua R(x)
Thay x = 1 vào đa thứ F(x) ta cso
F(x) = 14 + 2.13 - 2.12- 6.1 + 5
F (x) = 0
Vậy 1 không phải là nghiệm của đa thức F(x)
Thay x = -1 vào đa thức F(x) ta có
F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5
F(x) = 8
Vậy -1 không phải là nghiệm của đa thức F(x)
Thay x = 2 vào đa thức F(x) ta có
F(x) = 24 + 2.23 - 2.22- 6.2 + 5
F(x) = 17
Vậy 2 không phải là nghiệm của đa thức F(x)
Thay x = 12 vào đa thức F(x) ta có
F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5
F(x)= -7
Vậy -2 không phải là nghiệm của đa thức F(x)
a) ta có:
+) x = 5 => f(5) = 52 - 6.5 + 5 = 25 - 30 + 5 = 0
=> x = 5 là nghiệm của f(x)
+) x = 3 => f(3) = 32 - 6.3 + 5 = 9 - 18 + 5 = -4
=> x = 3 ko là nghiệm của f(x)
+) x = 1 =. f(1) = 12 - 6.1 + 5 = 1 - 6 + 5 = 0
=> x = 1 là nghiệm của f(x)
+) x = 0 => f(0) = 02 - 6.0 + 5 = 5
=> x = 5 ko là nghiệm của f(x)
b) Tập hợp S = {5; -1}
c) Ta có : x4 \(\ge\)0 ; 1/5x2 \(\ge\)0 ; 2012 > 0
=> x4 + 1/5x2 + 2012 > 0
=> đa thức h(x) ko có nghiệm
\(a.\)Thay lần lượt các giá trị của \(x\)trong tập hợp số \(\left\{5;3;-1;0\right\}\)vào đa thức \(f\left(x\right)\)như bn Edogawa Conan nha !
Ta thấy \(f\left(5\right)=5^2-6.5+5=0\)nên \(x=5\)là 1 ngiệm của \(f\left(x\right)\)
\(b.\)Ta có: \(f\left(x\right)=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
\(f\left(x\right)=0\Leftrightarrow\cdot x-1\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
\(c.\)Xét đa thức \(h\left(x\right)=x^4+\frac{1}{5}x^2+2012\)
Do \(x^4\ge0\)và \(\frac{1}{5}x^2\ge0\)với mọi \(x\)nên \(h\left(x\right)>0\)với mọi \(x\)
Vậy \(h\left(x\right)\ne0\)với mọi \(x\)Do đó đa thức \(h\left(x\right)\)không có nghiệm
\(x^4+2x^3-2x^2-6x+5=0\\ \Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(4x^3-8x^2+4x\right)+\left(5x^2-10x+5\right)=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+4x\left(x^2-2x+1\right)+5\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-2x+1\right)\left(x^2+4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^2+4x+4\right)+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+2\right)^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)
Bạn thay từng số 1,-1,5,-5 vào đa thức f(x)
Nếu số nào thay vào mà f(x)=0 thì số đó là nghiệm của đa thức
`m=1=>f(x)=0`
`=>m=1(tm)`
`m=-1=>f(x)=9`
`=>m=-1(l)`
`m=2=>f(x)=1`
`=>m=2(l)`
`m=-2=>f(x)=-7`
`=>m=-2(l)`
Vậy m=1 thì f(x)=0
Giải:
\(*)\) Với \(x=1\) ta có:
\(R\left(x\right)=1^4+2.1^3-1^2+1-3\)
\(=1+2-1+1-3=0\)
\(\Rightarrow1\) là nghiệm của đa thức \(R\left(x\right)\)
\(*)\) Với \(x=2\) ta có:
\(R\left(x\right)=2^4+2.2^3-2^2+2-3\)
\(=16+16-4+2-3=27\)
\(\Rightarrow2\) không là nghiệm của đa thức \(R\left(x\right)\)
\(*)\) Với \(x=-1\) ta có:
\(R\left(x\right)=\left(-1\right)^4+2.\left(-1\right)^3-\left(-1\right)^2+\left(-1\right)-3\)
\(=1+\left(-2\right)-1+\left(-1\right)-3=-6\)
\(\Rightarrow-1\) là không là nghiệm của đa thức \(R\left(x\right)\)
\(*)\) Với \(x=0\) ta có:
\(R\left(x\right)=0^4+2.0^3-0^2+0-3\)
\(=0+0-0+0-3=0-3=-3\)
\(\Rightarrow0\) không là nghiệm của đa thức \(R\left(x\right)\)
Vậy trong các số trên, chỉ có \(1\) là nghiệm của đa thức \(R\left(x\right)\)
dài nhỉ