K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Đặt \(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}\)

\(\Rightarrow5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^9}\)

\(\Rightarrow5A-A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^9}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}\right)\)

\(\Rightarrow4A=1-\dfrac{1}{5^{10}}\)

\(\Rightarrow A=\dfrac{1-\dfrac{1}{5^{10}}}{4}\)

Vậy \(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}=\dfrac{1-\dfrac{1}{5^{10}}}{4}\)

7 tháng 4 2017

\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+......+\dfrac{1}{5^{10}}\)

= \(\dfrac{1}{5}\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^9}\right)\)

= \(\left[\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^9}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{10}}\right)\right]\) : 4

= \(\left(1-\dfrac{1}{10}\right):4\)

18 tháng 6 2018

\(M=\dfrac{8}{3}\cdot\dfrac{2}{5}\cdot\dfrac{3}{8}\cdot10\cdot\dfrac{19}{92}\\ =\dfrac{8\cdot2\cdot3\cdot10\cdot19}{3\cdot5\cdot8\cdot92}\\ =\dfrac{8\cdot2\cdot3\cdot2\cdot5\cdot19}{3\cdot5\cdot8\cdot2\cdot2\cdot23}\\ =\dfrac{19}{23}\)

\(N=\dfrac{5}{7}\cdot\dfrac{5}{11}+\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{14}{11}\\ =\dfrac{5}{7}\cdot\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\\ =\dfrac{5}{7}\cdot\left(-\dfrac{7}{11}\right)\\ =-\dfrac{5}{11}\)

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot0\\ =0\)

6 tháng 5 2018

A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)

=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)

=2.(1-1/101)

=2.(101/101-1/101)

=2.100/101

200/101

6 tháng 5 2018

B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)

=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)

=2.(1/1+1/101)

=2.(101/101+1/101)

=2.102/101

=204/101

15 tháng 5 2017

a) \(1-\dfrac{1}{2}=\dfrac{1}{2}\)

\(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{3-2}{6}=\dfrac{1}{6}\)

\(\dfrac{1}{3}-\dfrac{1}{4}=\dfrac{4-3}{12}=\dfrac{1}{12}\)

\(\dfrac{1}{4}-\dfrac{1}{5}=\dfrac{5-4}{20}=\dfrac{1}{20}\)

\(\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{6-5}{30}=\dfrac{1}{30}\)

b) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)

\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+-\dfrac{1}{6}\)\(=1+-\dfrac{1}{6}\)

\(=\dfrac{5}{6}\)

3 tháng 5 2018

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

7 tháng 7 2017

Các câu dễ tự làm nha:

\(D=\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(D=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)\(D=-\dfrac{1}{100}-1\)

a: \(=\left(\dfrac{19}{6}-\dfrac{2}{5}\right):\left(\dfrac{29}{6}+\dfrac{7}{10}\right)\)

\(=\dfrac{19\cdot5-2\cdot6}{30}:\dfrac{290+42}{30}=\dfrac{83}{332}=\dfrac{1}{4}\)

b: \(=\dfrac{\left(\dfrac{102}{25}-\dfrac{2}{25}\right)\cdot\dfrac{17}{4}}{\left(6+\dfrac{5}{9}-3-\dfrac{1}{4}\right)\cdot\dfrac{16}{7}}\)

\(=\dfrac{4\cdot\dfrac{17}{4}}{\dfrac{16}{7}\cdot\dfrac{119}{36}}=\dfrac{17}{\dfrac{68}{9}}=17\cdot\dfrac{9}{68}=\dfrac{9}{4}\)

c: \(=\left(\dfrac{120}{60}-\dfrac{15}{60}+\dfrac{20}{60}-\dfrac{36}{60}\right):\left(\dfrac{45}{15}-\dfrac{3}{15}-\dfrac{25}{15}\right)\)

\(=\dfrac{89}{60}:\dfrac{17}{15}=\dfrac{89}{60}\cdot\dfrac{15}{17}=\dfrac{89}{68}\)

12 tháng 8 2017

a) Hình như nhầm đề thì phải :v

\(P=\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{6}{11}}\)

\(=\dfrac{\dfrac{5}{12}+\dfrac{5}{11}}{\dfrac{5}{12}+\dfrac{5}{11}}=1\)

b) \(Q=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(Q=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(0,125-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(Q=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(Q=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}\right)}=\dfrac{1}{3}+\dfrac{1}{\dfrac{3}{2}}\)

\(Q=\dfrac{1}{3}+\dfrac{2}{3}=1\)

12 tháng 8 2017

a,\(P=\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}=\dfrac{\left(\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}\right).132}{\left(\dfrac{5}{12}+1-\dfrac{7}{11}\right).132}=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)

b, Ta có : 0,125 = \(\dfrac{1}{8}\) ; 0,375 = \(\dfrac{3}{8}\) ; 0,2 = \(\dfrac{1}{5}\) ; 0,5 = \(\dfrac{3}{6}\)

\(Q=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)

\(Q=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\cdot\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{2\cdot\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}{3\cdot\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}\)

\(Q=\dfrac{1}{3}+\dfrac{2}{3}=1\)

11 tháng 8 2017

BT1: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}>\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{5}{6}\)

Vậy ta suy ra đpcm

11 tháng 8 2017

1. Ta có :

\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}>\dfrac{1}{6}+\dfrac{1}{6}+.....+\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}< \dfrac{1}{6}.5\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}< \dfrac{5}{6}\)

\(\rightarrowđpcm\)