Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
\(A=n^2+n+1=n\left(n+1\right)+1\)
Với \(n\inℤ\)thì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên chia hết cho \(2\).
Do đó \(n\left(n+1\right)\)là số chẵn nên \(A=n\left(n+1\right)+1\)là số lẻ.
Do đó \(A\)không chia hết cho \(4\).
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
Câu hỏi của Dung Viet Nguyen - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Điều kiện: n > 3
Xét 3 số tự nhiên liên tiếp: n^2 - 1; n^2; n^2 + 1, trong 3 số này có 1 số chia hết cho 3
Do n nguyên tố > 3 => n không chia hết cho 3 => n^2 không chia hết cho 3
Mà n^2 - 1 nguyên tố > 3 vì n > 3 => n^2 + 1 chia hết cho 3
Mà n^2 + 1 > 3 => n^2 + 1 là hợp số ( đpcm)
Đặt \(A=n^2\left(n^2-1\right)\)
Trường hợp 1: n=2k
\(A=\left(2k\right)^2\left(4k^2-1\right)\)
\(=2k\cdot\left(2k+1\right)\left(2k-1\right)\cdot2k\)
Vì 2k;2k+1;2k-1 là ba số tự nhiên liên tiếp
nên \(2k\left(2k+1\right)\left(2k-1\right)⋮3!=6\)
hay \(A⋮12\left(1\right)\)
Trường hợp 2: n=2k+1
\(A=\left(2k+1\right)^2\cdot\left[\left(2k+1\right)^2-1\right]\)
\(=\left(2k+1\right)\left(2k\right)\cdot\left(2k+2\right)\cdot\left(2k+1\right)\)
Vì 2k+1;2k;2k+2 là ba số tự nhiên liên tiếp
nên \(2k\left(2k+1\right)\left(2k+2\right)⋮6\)
\(\Leftrightarrow A⋮12\left(2\right)\)
Từ (1) và (2) suy ra \(A⋮12\)