Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(A>\sqrt{6}\)
Có \(\sqrt{6}< \sqrt{9}=3\) \(\Rightarrow\sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)\(\Rightarrow A=\sqrt{6+\sqrt{6+...+\sqrt{6}}}< 3\)
\(\Rightarrow\sqrt{6}< A< 3\)
\(\Rightarrow A\notin N\)
ta có:
\(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}>\sqrt{1}=1\)
lại có: \(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+2}}=2}\)\(\Rightarrow1< \sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}< 2\)
\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ko phải là STN
Nhìn vào bài dễ thấy, \(A>1\)hay ta chứng minh \(A< 2\)
Vậy: \(\sqrt{2+\sqrt{2}}< \sqrt{2+2}=\sqrt{4}=2\)
\(\sqrt{2+\sqrt{2+\sqrt{2}}}< \sqrt{2+2}=\sqrt{4}=2\)
Nên:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}< \sqrt{2+2}=\sqrt{4}=2\)
\(\Rightarrow1< A< 2\)hay \(A\neℕ\left(đpcm\right)\)
Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi
Gọi biểu thức trên là A
*Chứng minh A > 1/6
Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)
Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)
Và \(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)
Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)
Ta có: A < \(\sqrt{2+\sqrt{2+...+\sqrt{3}}}\) < \(\sqrt{3}\)
Lại có: A > \(\sqrt{2}\)
=> \(\sqrt{2}< A< \sqrt{3}\) => A ko phải số tự nhiên
đang cộng tất cả căn 2 sao tự nhiên lại cộng căn 3 vào làm gì bạn ơi