Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow1}\frac{x^4+x^3-2}{x^5-x^2}=\lim\limits_{x\rightarrow1}\frac{x^4-1+x^3-1}{x^2\left(x^3-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x^2-1\right)\left(x^2+1\right)+\left(x-1\right)\left(x^2+x+1\right)}{x^2\left(x-1\right)\left(x^2+x+1\right)}\)\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)+\left(x^2+x+1\right)\right]}{x^2\left(x-1\right)\left(x^2+x+1\right)}\)\(=\lim\limits_{x\rightarrow1}\frac{\left[\left(x+1\right)\left(x^2+1\right)+\left(x^2+x+1\right)\right]}{x^2\left(x^2+x+1\right)}\)=\(\frac{7}{3}\)
=lim x^2(x^2+x) - 2 \ x^2(x^3-1)=lim(x^2+x)\(x^3-1)=lim 2\-2=-1
ta có
\(y=\frac{\left(e^x+e^{-x}\right)\left(e^x+e^{-x}\right)-\left(e^x-e^{-x}\right)\left(e^x-e^{-x}\right)}{\left(e^x+e^{-x}\right)^2}=\frac{\left(e^x+e^{-x}\right)^2-\left(e^x-e^{-x}\right)^2}{\left(e^x+e^x\right)^2}=\frac{\left(e^x+e^{-x}+e^x-e^{-x}\right)\left(e^x+e^{-x}-e^x+e^{-x}\right)}{\left(e^x+e^{-x}\right)^2}=2\frac{e^x-e^{-x}}{\left(e^x+e^{-x}\right)^2}=\frac{2}{e^x+e^{-x}}\)
Đáp án B
S n = 1 − 1 2 2 1 − 1 3 2 ... 1 − 1 n 2 = 1 − 1 2 1 − 1 3 ... 1 − 1 n × 1 + 1 2 1 + 1 3 ... 1 + 1 n
1 − 1 2 1 − 1 3 ... 1 − 1 n = 1 2 . 2 3 ... n − 1 n = 1 n 1 + 1 2 1 + 1 3 ... 1 + 1 n = 3 2 . 4 3 ... n + 1 n = n + 1 2 ⇒ S n = 1 n . n + 1 2 = n + 1 2 n lim S n = lim n + 1 2 n = lim 1 + 1 n 2 = 1 2
ta có:
\(\lim\limits_{x\rightarrow0}\frac{5^x-1}{20^x-1}=\lim\limits_{x\rightarrow0}\frac{\ln5.5^x}{\ln20.20^x}=\frac{ln5}{ln20}\)