K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

Để a+ b lẻ => a chẵn , b lẻ hoặc a lẻ b chẵn

=> Chẵn x lẻ = Chẵn 

Vậy a+b lẻ thì ab chẵn

5 tháng 3 2018

a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1

Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.

Vậy n chia 8 dư 1.

b) Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
24 tháng 8

Lời giải:

Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

Nếu $a=6k+1$:

$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$

Nếu $a=6k+5$:

$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$

Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.

31 tháng 1 2016

Ta có: a không chia hết cho 3

TH1: a=3m+1              (m thuộc N)

=>a2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1

=>a2 chia 3 dư 1

TH2: a=3n+2          (n thuộc N)

=>a2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1

=>a2 chia 3 dư 1

Vậy a2 luôn chia 3 dư 1 

=>a2-1 chia hết cho 3                 (1)

Ta có: a lẻ

=>a2 lẻ

=>a2-1 chẵn

=>a2-1 chia hết cho 2            (2)

Từ (1) và (2) và (3;2)=1

=>a2-1 chia hết cho 3.2=6  (đpcm)

19 tháng 8 2015

Gọi d là ƯC của a và ab+4

=> a chia hết cho d, ab+4 chia hết cho d => 4 chia hết cho d => d = { 1, 2, 4}

nếu d=2 thì a chia hết cho 2 , ab+4 chia hết cho 2 ( vô lí vì a là số lẻ)

Tương tự d cũng ko thể bằng 4

Vậy d=1 => a và ab+4 là các số nguyên tố cùng nhau (ĐPCM)

11 tháng 6 2018

không hiểu

17 tháng 8 2018

n số đó bắt đầu từ số mấy

7 tháng 10 2018

vì a+b là số lẻ

=> a là số chẵn và b là số lẻ

hoặc a là số lẻ và b là số chẵn

=>a.b là số chẵn vì một trong hai số là số chẵn thì tích của hai số đó cx là số chẵn

Vậy  (a+b) là số lẻ=>ab là số chẵn

7 tháng 10 2018

Giả sử ab là số lẻ. Khi đó a và b đều lẻ \(\Rightarrow\) a + b chẵn, trái với đề bài.

Vậy ab là số chẵn

18 tháng 1 2018

a. Trong A, luôn có 1 số chẵn ( n có dạng 2k hoặc 2k + 1) đều thỏa mãn

=> Tích luôn bằng a

b. Nếu n = 2k

thì B = (2k)mũ 2 + 2k + 1

= 4k2 + 2k + 1 ( là số lẻ )

Nếu n = 2k+1

thì B = ( 2k + 1 )2 + 2k+ 1 + 1

= 4k2 + 1 + 2k + 2 ( là số lẻ )

=> đpcm

19 tháng 6 2017

Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN) 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3

k mình nha

19 tháng 6 2017

không nên:

  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.