Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số đo các góc của đa giác n cạnh là: 140.n
Mặt khác đa giác n cạnh thì có tổng số đo các góc của đa giác là: (n-2). 180
Suy ra: 140n = (n – 2). 180
⇔ 140n = 180n - 360
⇔ 40n = 360 ⇔ n = 9
Chọn đáp án A
a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)
b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)
Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)
Tổng số đo các góc ngoài của đa giác bằng \(360^o\)
Số đo một góc trong của hai đa giác đều là :
\(468^o-360^o=108^o\)
Gọi n là số cạnh của đa giác đều . Ta có số đo của mỗi đa giác đều bằng \(\frac{\left(n-2\right).180}{n}\)
\(=\frac{\left(n-2\right).180^o}{n}\)\(=108^o=180^o.n-360^o=108^o.n=72n=360^o=n=5\)
Vậy \(n=5\)