Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo ở đây nhé bn: olm.vn/hoi-dap/question/686545.html, mk lm r`
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}=P\)
=>(S-P)2013=02013=0
\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{2013}{2014}\)
\(\frac{3^{2013}-3^{2011}}{3^{2013}+3^{2012}}=\frac{3^{2011}.\left(3^2-1\right)}{3^{2012}.\left(3+1\right)}=\frac{8}{3.4}=\frac{2}{3}\)