K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{2017}\right)\)

\(=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}\)

\(=\frac{3.4....2018}{2.3....2017}=\)\(\frac{2018}{2}=1009\)

27 tháng 4 2018

=\(\frac{3}{2} × \frac{4}{3} × \frac{5}{4} ....× \frac{2018}{2017}\)

=>2008/2 = 1004

K MK NHA. CHÚC BẠN HỌC GIỎI

24 tháng 7 2018

= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)

=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018

=1/2018

24 tháng 7 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)

\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)

\(=\frac{1}{2018}\)

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)

12 tháng 7 2016

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)

\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)

\(=\frac{100}{2}=50\)

\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)

\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)

\(=\frac{-1}{100}\)

12 tháng 7 2016

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)

  \(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

\(=\frac{3.4.5.....100}{2.3.4.....99}\)

 \(=\frac{100}{2}=50\)

28 tháng 4 2016

D= [(1-1/2)(1-1/3)...(1-1/25)]:[(1+1/2)(1+1/3)...(1+1/25)]

D= [1/2. 2/3. ... . 24/25]: [3/2. 4/3. ... . 26/25]

D= 1/25 : 2/26

D= 1/25 . 26/2= 13/25

Vậy D= 13/25

28 tháng 4 2016

\(D=\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{25}\right)\right]\)\(:\left[\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{25}\right)\right]\)

\(D=\left[\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{24}{25}\right]:\left[\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{26}{25}\right]\)

\(D=\frac{1.2.3...24}{2.3.4...25}:\frac{3.4.5...26}{2.3.4...25}\)

\(D=\frac{1}{25}:13\)

\(D=\frac{1}{325}\)

29 tháng 3 2017

a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

29 tháng 3 2017

a) =3/2 . 4/3 . 5/4 ...100/99

   =\(\frac{3.4.5...100}{2.3.4..99}\)

  =\(\frac{100}{2}\)

b) =