K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đáp án là :

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

2 tháng 4 2019

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

P/S : quá dễ , t là thần đồng mà . 

Mỗi ngày 3 T i c   k , giờ làm như lời hứa đi

3 tháng 4 2019

ăn clkt

HẾT RỒI NHÉ ĐÁP ÁN LÀ : 

+ Ta có: y '= 3x2 + 6x + m

      + Để hàm số đã cho đồng biến trên R thì y' ≥ 0,∀x ∈R

      + Yêu cầu bài toán trở thành tìm điều kiện của m để y' ≥ 0,∀x ∈R

Ta có y' = 3x2 + 6x + m, ta có: a = 3>0,Δ = 36 - 12m

Để y' ≥ 0,∀x ∈ R khi Δ ≤ 0 ⇔ 36 - 12m ≤ 0 ⇔ m ≥ 3

Vậy giá trị của tham số m cần tìm là m ≥ 3

đáp án:

Hàm số đã cho xác định trên D = R.

Với m = -1. Khi đó hàm số trở thành y = -2x + 4 ; y' = -2 < 0 ∀x∈R, không thỏa mãn yêu cầu bài toán.

Với m ≠ -1. Ta có f'(x)= 3(m+1)x2 - 6(m + 1)x + 2m

   + Hàm số đồng biến trên khoảng có độ dài không nhỏ hơn 1 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn [x1;x2 ] thỏa mãn |x1 - x2 | ≥ 1

   + f'(x)= 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn[x1;x2]

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Theo Viét ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   + Với |x1 - x2 | ≥ 1 ⇔ (x1 + x2 )2 - 4x1 x2 - 1 ≥ 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đối chiếu điều kiện ta có m ≤ -9.

31 tháng 3 2017

1. a) Tập xác định : D = R; y' = 3 - 2x => y' = 0 ⇔ x = \(\dfrac{3}{2}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng (-∞; \(\dfrac{3}{2}\)); nghịch biến trên khoảng ( \(\dfrac{3}{2}\); +∞ ).

b) Tập xác định D = R;
y'= x2 + 6x - 7 => y' = 0 ⇔ x = 1, x = -7.

Bảng biến thiên :

Hàm số đồng biến trên các khoảng (- ; -7), (1 ; +) ; nghịch biến trên các khoảng (-7 ; 1).

c) Tập xác định : D = R.

y' = 4x3 - 4x = 4x(x2 - 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.

Bảng biến thiên: tự vẽ.

Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +) ; nghịch biến trên các khoảng (- ; -1), (0 ; 1).

d) Tập xác định : D = R. y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = \(\dfrac{2}{3}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng ( 0 ; \(\dfrac{2}{3}\) ) ; nghịch biến trên các khoảng (- ; 0), ( \(\dfrac{2}{3}\); +).

31 tháng 3 2017

1. a) Tập xác định : D = R; y' = 3 - 2x => y' = 0 ⇔ x = \(\dfrac{3}{2}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng (-∞; \(\dfrac{3}{2}\)); nghịch biến trên khoảng ( \(\dfrac{3}{2}\); +∞ ).

b) Tập xác định D = R;
y'= x2 + 6x - 7 => y' = 0 ⇔ x = 1, x = -7.

Bảng biến thiên :

Hàm số đồng biến trên các khoảng (-∞ ; -7), (1 ; +∞) ; nghịch biến trên các khoảng (-7 ; 1).

c) Tập xác định : D = R.

y' = 4x3 - 4x = 4x(x2 - 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.

Bảng biến thiên: tự vẽ.

Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +∞) ; nghịch biến trên các khoảng (-∞ ; -1), (0 ; 1).

d) Tập xác định : D = R. y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = 2323.

Bảng biến thiên :

Hàm số đồng biến trên khoảng ( 0 ; \(\dfrac{2}{3}\) ) ; nghịch biến trên các khoảng (-∞ ; 0), ( \(\dfrac{2}{3}\); +∞).

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên : A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞) Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên : A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\)) Câu 3: Hàm số y =...
Đọc tiếp

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến

Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên :

A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞)

Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên :

A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\))

Câu 3: Hàm số y = \(\dfrac{x+1}{x-1}\) luôn nghịch biến trên :

A. R B. R\{1} C. (0;+∞) D. (-∞;1);(1;+∞)

Câu 4. Hàm số nào sau đâu nghịch biến trên (1;3) :

A. y = x2-4x+8 B.y =\(\dfrac{x^2+x-1}{x-1}\) C.y =\(\dfrac{2}{3}x^3-4x^2+6x-1\) D. y =\(\dfrac{2x-4}{x-1}\)

Câu 5. Hàm số nào sau đây luôn đồng biến trên R :

A. y = x3+2016 B. y = tanx C. y= x4+x2+1 D. y =\(\dfrac{2x+1}{x+3}\)

Câu 6. Trong các hàm số sau hàm số nào đồng biến trên miền xác định của nó :

A. y = \(\sqrt[3]{x+1}\) B.y = \(\dfrac{\sqrt{x^2+1}}{x^2}\) C. y = \(\dfrac{2x+1}{x+1}\) D. y = sinx

Câu 7. Hà, số y=|x-1|(x2-2x-2) có bao nhiêu khoảng đồng biến :

A.1 B.2 C.3 D.4

Câu 8. Hàm số y = \(\sqrt{2x-x^2}\) nghịch biến trên khoảng nào ?

A. (1;2) B. (1;+∞) C. ( 0;1) D. (0;2)

Câu 9 . Trong các hàm số sau , hàm số nào nghịch biến trên khoảng (0;2) :

A. y = \(\dfrac{x+3}{x-1}\) B. y = x4+2x2+3 C. y= x3-x2+3x-5 D. y= x3-3x2-5

1
7 tháng 8 2018

câu 1 B

câu 2 B

câu 3 D

câu 4 C

câu 5 C

câu 8 A

câu 9 D

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Lời giải:

TXĐ: $x\in\mathbb{R}$

$y'=3x^2+2x=0\Leftrightarrow x=0$ hoặc $x=\frac{-2}{3}$

Ta có bảng biến thiên:

Hỏi đáp Toán

Nhìn bảng ta thấy hàm só đồng biến trên $(-\infty; -\frac{2}{3})$ và $(0;+\infty)$; nghịch biến trên $(-\frac{2}{3};0)$

7 tháng 10 2020

Đạo hàm đại r ạ (5x)' phải bằng 5 chứ ạ

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

30 tháng 8 2023

1

14 tháng 9 2020

Gọi f(x)=x2+2x-3

\(f'\left(x\right)=2x+2\) \(\Rightarrow f'\left(x\right)=0\:\Leftrightarrow2x+2=0\:\Leftrightarrow x=-1\)

Vẽ bảng biến thiên giúp mình nghen. Từ \(\left(-\infty;-1\right)\)hàm số nghịch biến, từ \(\left(-1;+\infty\right)\) hàm số đồng biến.

Mà f(x)=0 \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Suy ra sẽ có 3 cực trị tại x=-3;x=1 và x=-1