K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

#)Giải :

Điệu kiện : \(x\in Z;x< 0\)

Thử đi bạn, số nào cg ra 

\(x^3< x^2\)

\(\Rightarrow x.x.x< x.x\)

tức x thuộc số âm

\(\Rightarrow x\in z,x< 0\)

a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)

   \(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)

   \(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)

   \(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)

 

  \(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)

  \(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)

  \(Q\left(x\right)=5x^2-3x^3-5x^4\)

  \(Q\left(x\right)=-5x^4-3x^2+5x^2\)

b)

\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)

\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)

\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)

Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

\(=5x+7x^2+4+4-6x^4\)

\(=\) \((12x-4)^2+4\ge4-6x^4\)

Câu c MIK KHÔNG CHẮC LÀ ĐÚNG 

13 tháng 5 2022

`a)`

`@P(x)+Q(x)=3x^3+x^2+5x+5-3x^3-x^2-3`

               `=5x+2`

`@P(x)-Q(x)=3x^3+x^2+5x+5+3x^3+x^2+3`

                  `=6x^3+2x^2+5x+8`

_________________________________________

`b)` Thay `x=-1` vào `P(x)-Q(x)` có:

    `6.(-1)^3+2.(-1)^2+5.(-1)+8`

`=6.(-1)+2.1-5+8`

`=-6+2-5+8=-1`

_______________________________________________

`c)` Cho `P(x)+Q(x)=0`

`=>5x+2=0`

`=>5x=-2`

`=>x=-2/5`

Vậy nghiệm của đa thức `P(x)+Q(x)` là `x=-2/5`

17 tháng 3 2018

= (-1)^2 +(-1)^4+....+(-1)^100=1+1+....+1=50

a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)

\(Q\left(x\right)=-5x^3+6x^2+x+5\)

b: \(H\left(x\right)=Q\left(x\right)+P\left(x\right)=-10x^3+9x^2+3x+10\)

Khi x=1/2 thì \(H\left(x\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+\dfrac{3}{2}+10=\dfrac{25}{2}\)

 

14 tháng 5 2022

Bạn ơi cho mình hỏi là câu c là cái phần cuối hả bạn

 

25 tháng 5 2020

Gọi số mũ của x là m và số mũ của y là n 

Ta có: \(\frac{m}{2}=\frac{n}{\frac{3}{2}}\Rightarrow\frac{m}{4}=\frac{n}{3}\)

và m - n = 1 

Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{m}{4}=\frac{n}{3}=\frac{m-n}{4-3}=1\)

=> m = 4 và n = 3 

=> Đơn thức có dạng: \(ax^4y^3\)

Theo bài ra: \(a.2^4.\left(-3\right)^3=1296\)=> a = -3 

Vậy đơn thức cần tìm là: \(-3x^4y^3\)

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )