Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=3\left(x+5\right)+x^2\)
Thay x = 1 vào A, ta được:
\(A=3\left(1+5\right)+1^2\)
\(A=3.6+1\)
\(A=19\)
b) \(B=3x\left(x+2\right)-x\left(x+1\right)\)
Thay x = -1 vào B, ta được:
\(B=3.\left(-1\right)\left(-1+2\right)-\left(-1\right)\left(-1+1\right)\)
\(B=-3-0\)
\(B=-3\)
c) \(C=7x\left(x-5\right)+3\left(x-2\right)\)
Thay x = 0 vào C, ta được:
\(C=7.0.\left(0-5\right)+3.\left(0-2\right)\)
\(C=0+3.\left(-2\right)\)
\(C=-6\)
d) \(D=-2x\left(x+1\right)+4\left(x+2\right)\)
Thay x = -1 vào D, ta được:
\(D=-2\left(-1\right)\left(-1+1\right)+4\left(-1+2\right)\)
\(D=0+4\)
\(D=4\)
e) \(E=x^2-x+2x\left(x+3\right)\)
Thay x = 2 vào E, ta được:
\(E=2^2-2+2.2\left(2+3\right)\)
\(E=4-2+4.5\)
\(E=22\)
f) \(F=5-4x\left(x-2\right)\)
Thay x = -1 vào F, ta được:
\(F=5-4.\left(-1\right)\left(-1-2\right)\)
\(F=5-12\)
\(F=-7\)
g) \(G=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
Thay x = -2 vào G, ta được:
\(G=-2\left(-2-5\right)-2.\left(-2\right)\left(-2+1\right)+\left(-2\right)^2\)
\(G=14-4+4\)
\(G=14\)
h) \(H=x\left(7x+2\right)-5x\left(x+3\right)\)
Thay x = 1 vào H, ta được:
\(H=1\left(7.1+2\right)-5.1\left(1+3\right)\)
\(H=9-20\)
\(H=-11\)
i) \(I=3x^2-2x\left(x-5\right)+x\left(x-7\right)\)
Thay x = 10 vào I, ta được:
\(I=3.10^2-2.10\left(10-5\right)+10.\left(10-7\right)\)
\(I=300-100+30\)
\(I=230\)
a) Thay x=1:
\(9.1^2+12.1+49=70\)
b) Thay x=-2 và y=3:
\(25.\left(-2\right)^2-10\left(-2\right).3+3^2\)\(=169\)
c)Thay x=-10:
\(\left(-10\right)^3+15\left(-10\right)^2+75\left(-10\right)+125=-125\)
d) Thay x=13:
\(13^3-9.13^2+27.13-27=1000\)
e) Thay x=-2:
\(\left(-2-1\right)^3-4\left(-2\right)\left(-2+1\right)\left(-2-1\right)+3\left(-2-1\right)\left[\left(-2\right)^2-2+1\right]\)=-30
f) Thay x=1:
\(\left(1-1\right)\left(1-2\right)\left(1+1+1\right)\left(4+2+1\right)=0\)
\(9x^2+12x+49=\left(9x^2+12x+4\right)+45=\left(3x+2\right)^2+45=5^2+45=25+45=70\)
\(25x^2-10xy+y^2=\left(5x-y\right)^2=\left(-13\right)^2=169\)
\(x^3+15x^2+75x+125=\left(x^3+5x^2\right)+\left(10x^2+50x\right)+\left(25x+125\right)=x^2\left(x+5\right)+10x\left(x+5\right)+25\left(x+5\right)=\left(x+5\right)^2\left(x+5\right)=\left(x+5\right)^3=-125\)
\(x^3-9x^2+27x-27=\left(x^3-3x^2\right)-\left(6x^3-18x\right)+\left(9x-27\right)=x^2\left(x-3\right)-6x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)^3=1000\)
\(x=1\Rightarrow x-1=0\Rightarrow\left(x-1\right)\left(x-2\right)\left(1+x+x^2\right)\left(4+2x+x^2\right)=0\)
a, bạn xem lại đề
b, \(\frac{x^3-1}{x^2-1}=\frac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x^2+x+1}{x+1}\)
Thay x = 6 ta được : \(=\frac{36+6+1}{6+1}=\frac{43}{7}\)
c, \(\frac{x^2-2x+1}{x^3-1}+\frac{x^2-1}{\left(x-1\right)^2}=\frac{x-1}{x^2+x+1}+\frac{x+1}{x-1}\)
\(=\frac{x^2-1+x^3+x^2+x+x^2+x+1}{x^3-1}=\frac{x^3+3x^2+2x}{x^3-1}=\frac{x\left(x^2+3x+2\right)}{x^3-1}\)
Giải:
a) \(B=3x\left(x+2\right)-x\left(x+1\right)\)
Tại x = -1, ta được:
\(B=3\left(-1\right)\left(-1+2\right)-\left(-1\right)\left(-1+1\right)\)
\(\Leftrightarrow B=-3-0=-3\)
b) \(C=7x\left(x-5\right)+3\left(x-2\right)\)
Tại x = 0, ta được:
\(C=7.0\left(0-5\right)+3\left(0-2\right)\)
\(\Leftrightarrow C=0+\left(-6\right)=-6\)
c) \(D=-2x\left(x+1\right)+4\left(x+2\right)\)
Tại x = -1, ta được:
\(D=-2\left(-1\right)\left(-1+1\right)+4\left(-1+2\right)\)
\(\Leftrightarrow D=0+4=4\)
d) \(E=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
Tại x = -2, ta được:
\(E=-2\left(-2-5\right)-2\left(-2\right)\left(-2+1\right)+\left(-2\right)^2\)
\(\Leftrightarrow E=14-4+4=14\)
e) \(F=x\left(7x+2\right)-5x\left(x+3\right)\)
Tại x = 1, ta được:
\(F=1\left(7.1+2\right)-5.1\left(1+3\right)\)
\(F=9-20=-11\)
Vậy ...
\(B=3x\left(x+2\right)-x\left(x+1\right)\)
\(B=3x^2+6x-x^2-x\)
\(B=2x^2+5x\)
\(B=x\left(2x+5\right)\)
Tại x = -1 ta có :
\(B=\left(-1\right)\left[2.\left(-1\right)+5\right]=\left(-1\right).3=-3\)
\(C=7x\left(x-5\right)+3\left(x-2\right)\)
\(C=7x^2-35x+3x-6\)
\(C=7x^2-32x-6\)
Tại x=0 ta có :
\(C=7.0-32.0+6=6\)
\(D=-2x\left(x+1\right)+4\left(x+2\right)\)
\(D=-2x^2-2x+4x+8\)
\(D=-2x^2+2x+8\)
\(D=-2\left(x^2-x-4\right)\)
Tại x = -1 ta có :
\(D=-2.\left[\left(-1\right)^2-\left(-1\right)-4\right]=4\)
\(E=x\left(x-5\right)-2x\left(x+1\right)+x^2\)
\(E=x^2-5x-2x^2-2x+x^2\)
\(E=-7x\)
Tại x = -2 ta có :
\(E=-7\left(-2\right)=14\)
\(F=x\left(7x+2\right)-5x\left(x+3\right)\)
\(F=7x^2+2x-5x^2-15x\)
\(F=2x^2-13x=x\left(2x-13\right)\)
Tại x= 1 ta có :
\(F=1.\left(2.1-13\right)=-11\)
\(b=x^6+x^5+x^4+x^3+x+17\)
\(b=x^6+x^5+x^4+x^3+x+1+16\)
\(b=\left(x^6+x^5\right)+\left(x^4+x^3\right)+\left(x+1\right)+16\)
\(b=x^5\left(x+1\right)+x^3\left(x+1\right)+1\left(x+1\right)+16\)
\(b=\left(x^5+x^3+1\right)\left(x+1\right)+16\)
\(b=10\left(9^5+9^3+1\right)+16\)
\(c=\left(x+3\right)\left(x-2\right)-x\left(x+1\right)\)
\(c=\left(x^2-2x+3x-6\right)-\left(x^2+x\right)\)
\(c=\left(x^2+x-6\right)-\left(x^2+x\right)\)
\(c=x^2+x-6-x^2-x=-6\)
nên biểu thức không phụ thuộc vào biến
\(x=bn\) cx đc
Bài 2:
a: \(3\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)\)
\(=3\left(x^3-1\right)+x^3-3x^2+3x-1-4x\left(x^2-1\right)\)
\(=3x^3-3+x^3-3x^2+3x-1-4x^3+4x\)
\(=-3x^2+7x-4\)
\(=-3\cdot\left(-1\right)^2+7\cdot\left(-1\right)-4\)
=-3-4-7=-14
b: \(=27x^3y^3-8-3xy\left(9x^2y^2+6xy+1\right)\)
\(=27x^3y^3-8-27x^3y^3-18x^2y^2-3xy\)
\(=-18x^2y^2-3xy-8\)
\(=-18\cdot\left[\left(-2010\right)\cdot\left(-\dfrac{1}{2010}\right)\right]^2-3\cdot\left(-2010\right)\cdot\dfrac{-1}{2010}-8\)
\(=-18-3-8=-29\)
Bài 1:
a: \(C=\left(x-3\right)\left(x+3\right)-\left(x+5\right)\left(x-1\right)\)
\(=x^2-9-\left(x^2+4x-5\right)\)
\(=x^2-9-x^2-4x+5=-4x-4\)
b: \(D=\left(3x-2\right)^2+2\left(x+1\right)\left(3x-2\right)+\left(x+1\right)^2\)
\(=\left(3x-2+x+1\right)^2=\left(4x-1\right)^2=16x^2-8x+1\)
Với\(\left(x-3\right)\left(x+3\right)-\left(x+2\right)\left(x-1\right)\) và x = 1/3
\(\Rightarrow\left(\frac{1}{3}-3\right)\left(\frac{1}{3}+3\right)-\left(\frac{1}{2}+2\right)\left(\frac{1}{2}-1\right)=\left(\frac{1}{3}\right)^2-3^2-\left(\frac{5}{2}\cdot2-\frac{5}{2}\right)\)\(=\frac{1}{3^2}-\frac{3^2}{1}-\left(\frac{5}{1}-\frac{5}{2}\right)=\frac{1}{3^2}-\frac{3^4}{3^2}-\frac{5}{2}\)\(=\frac{-80}{3^2}-\frac{5}{2}=\frac{-160-45}{18}=\frac{-205}{18}\)
( x - 3 )( x + 3 ) - ( x + 2 )( x - 1 )
= x2 - 9 - ( x2 + x - 2 )
= x2 - 9 - x2 - x + 2
= -x - 7
Với x = 1/3 => Gtri bthuc = -1/3 - 7 = -22/3