K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

a) khi m khác 1/2

b)khi m >1

c) khi K<5

29 tháng 3 2018

a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)

Hàm số đồng biến khi m – 1 > 0 hay m > 1.

Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.

b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).

Hàm số nghịch biến khi 5 – k < 0 hay k < 5.

Kết hợp với điều kiện (**) ta được với k < 5 thì hàm số nghịch biến.

29 tháng 3 2018

a, y= 5x - (2-x)k = 5x - 2k + k.x = (5+k)x - 2k

Vậy hàm số có hệ số a= 5+k. Khi đó:

+ Hàm số đồng biến a > 0 ⇔ 5 + k > 0 ⇔ k > -5

+ Hàm số nghịch biến a < 0 ⇔ 5 + k < 0 ⇔ k < -5.

Chuyên đề Toán lớp 9

 

a: ĐKXĐ: \(m\le5\)

b: ĐKXĐ: \(m\notin\left\{-1;1\right\}\)

c: ĐKXĐ: \(m\ne-2\)

28 tháng 5 2017

a,khi m-1>=0 thi ham so dong bien tuc m>=1

b,khi 5-k<=0 thi ham so nghich bien tuc k>=5

29 tháng 5 2017

a) Khi m - 1 \(\ge\)0 thì hàm số đồng biến tức m \(\ge\)1

b) Khi 5 - k \(\le\)0 thì hàm số nghịch biến tức k \(\ge\)5

24 tháng 10 2023

a) Ta có: \(y=\sqrt{m-3}\cdot x+\dfrac{2}{3}\left(m\ge3\right)\) 

Để đây là hàm số bậc nhất thì: \(\sqrt{m-3}\ne0\Leftrightarrow m=3\) 

Do: \(\sqrt{m-3}\ge0\forall m\ge3\) 

Nên với \(m\ge3\) thì y đồng biến trên R 

b) Ta có: \(y=\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\cdot x+2010\left(m\ge0;m\ne5\right)\)

Để đây là hàm số bậc nhất thì: \(\sqrt{m}-\sqrt{5}\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m\ne5\end{matrix}\right.\) 

Do \(\sqrt{m}+\sqrt{5}>0\Rightarrow\sqrt{m}-\sqrt{5}< 0\Leftrightarrow m< 5\)

Vậy với 0 ≤ m < 5 thì y nghịch biến trên R

24 tháng 10 2023

Câu kết luận cuối cùng em ơi!

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

6 tháng 8 2018

a, y là hàm số bậc nhất khi \(2-m\ne0\Leftrightarrow m\ne2\)

b , y đồng biến khi 2 - m > 0 => m < 2

    y nghịch biến khi 2 - m < 0 => m > 2

c,  (d) // y=4-x khi

 \(\hept{\begin{cases}2-m=4\\m-1\ne-x\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-2\\m\ne-x+1\end{cases}}\Leftrightarrow m=-2\)

👍👍✔✔✔