K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

\(-x^2+2x+5=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4< 0\left(\forall x\right)\)

=>\(\frac{-x^2+2x-5}{x^2-mx+1}\le0\left(\forall x\right)=>x^2-mx+1>0\left(\forall x\right)\)

\(\Rightarrow\Delta< 0\Leftrightarrow m^2-4< 0=>-2< m< 2\)

12 tháng 4 2020

                   X2- mx+1 <0

             \(\Delta\)= (-m)2 -4.1.1

             \(\Delta\)= m -4

để BPT trên có nghiệm khi \(\Delta\)<0

                                  Tức là: m-4<0

                                             m<4

Vậy khi m<4 thì BPT luôn nhỏ hơn o với mọi x

7 tháng 4 2017

 

a)

Để \(5x^2-x+m>0\) thì:

\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)

\(mx^2-10x-5< 0\)

Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

NV
18 tháng 2 2020

b/ \(\Leftrightarrow-4< \frac{-2x^2-mx+4}{x^2-x+1}< 6\)

Do \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x nên BPT tương đương:

\(-4\left(x^2-x+1\right)< -2x^2-mx+4< 6\left(x^2-x+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(m+4\right)x+8>0\\8x^2+\left(m-6\right)x+2>0\end{matrix}\right.\)

Cả 2 BPT đều đúng với mọi x khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta_1=\left(m+4\right)^2-64< 0\\\Delta_2=\left(m-6\right)^2-64< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+8m-48< 0\\m^2-12m-28< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-12< m< 4\\-2< m< 14\end{matrix}\right.\) \(\Rightarrow-2< m< 4\)

NV
18 tháng 2 2020

c/ Do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\) với mọi x, BPT tương đương:

\(-\left(2x^2-3x+2\right)\le x^2+5x+m< 7\left(2x^2-3x+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5x+m\ge-2x^2+3x-2\\14x^2-21x+14>x^2+5x+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2x+m+2\ge0\\13x^2-26x-m+14>0\end{matrix}\right.\)

Để 2 BPT đều đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}4-12\left(m+2\right)\le0\\13^2-13\left(-m+14\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-20\le12m\\-13+13m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{5}{3}\le m< 1\)

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

7 tháng 5 2016

Đặt \(t=3^x,t>0\)

Bất phương trình trở thành :

\(m.t^2+9\left(m-1\right)t+m-1>0\)

\(\Leftrightarrow m\left(t^2+9t+1\right)>9t+1\)

\(\Leftrightarrow m>\frac{9t+1}{t^2+9t+1}\)

Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :

\(m>max_{t>0}\frac{9t+1}{t^2+9t+1}\)

Xét hàm số \(f\left(t\right)=\frac{9t+1}{t^2+9t+1};t>0\)

Ta có : \(f'\left(t\right)=\frac{-9t-2}{\left(t^2+9t+1\right)^2}< 0,t>0\)

đây là hàm nghịch biến suy ra \(f\left(t\right)< f\left(0\right)=1\)

Do đó : \(\frac{9t+1}{t^2+9t+1}< 0,t>0\) nên các giá trị cần tìm là \(m\ge1\)