Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{4ab}{a+2b}+\dfrac{9ca}{a+4c}+\dfrac{4bc}{b+c}\)
\(P=\dfrac{4abc}{ac+2bc}+\dfrac{9abc}{ab+4bc}+\dfrac{4abc}{ab+ac}\)
\(P=abc\left(\dfrac{4}{ac+2bc}+\dfrac{9}{ab+4bc}+\dfrac{4}{ab+ac}\right)\)
\(P\ge abc.\dfrac{\left(2+3+2\right)^2}{ac+2bc+ab+4bc+ab+ac}\)
\(P\ge abc.\dfrac{49}{2ab+6bc+2ca}\)
\(P\ge abc.\dfrac{49}{7abc}\) (vì \(2ab+6bc+2ca=7abc\))
\(P\ge7\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{ac+2bc}=\dfrac{3}{ab+4bc}=\dfrac{2}{ab+ac}\\2ab+6bc+2ca=7abc\end{matrix}\right.\)
\(\dfrac{2}{ac+2bc}=\dfrac{2}{ab+ac}\) \(\Leftrightarrow2b=a\)
Có \(\dfrac{3}{ab+4bc}=\dfrac{2}{ab+ac}\)
\(\Leftrightarrow\dfrac{3}{2b^2+4bc}=\dfrac{2}{2b^2+2bc}\)
\(\Leftrightarrow3b^2+3bc=2b^2+4bc\)
\(\Leftrightarrow b^2=bc\Leftrightarrow b=c\)
\(\Rightarrow a=2b=2c\)
Lại có \(2ab+6bc+2ca=7abc\) \(\Rightarrow4b^2+6b^2+4b^2=14b^3\)
\(\Leftrightarrow b=1\)
\(\Leftrightarrow\left(a,b,c\right)=\left(2,1,1\right)\)
Vậy \(min_P=7\)
Dặt x=a, y=2b,z=3c
Khi đó
\(P=\frac{yz}{\sqrt{x+yz}}+\frac{xz}{\sqrt{y+xz}}+\frac{xy}{\sqrt{z+xy}}\)và x+y+z=1
Ta có \(\frac{yz}{\sqrt{x+yz}}=\frac{yz}{\sqrt{x\left(x+y+z\right)+yz}}=\frac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}yz\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{xz}{x+y}+\frac{yz}{x+y}\right)+\frac{1}{2}\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+...=\frac{1}{2}\left(x+y+z\right)\)
\(=\frac{1}{2}\)
Vậy \(MaxP=\frac{1}{2}\)khi x=y=z=1/3 hay \(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\\c=\frac{1}{9}\end{cases}}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)
Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)
\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lại có:
\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)
\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)
\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)
Do đó:
\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)
\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)
\(Q^2\ge4\left(a+b+c\right)\ge4\)
\(\Rightarrow Q\ge2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\)
\(M=xy-yz+zx\)
Ta có:
\(4M+1=4\left(xy-yz+zx\right)+\left(x+y+z\right)^2\)
\(=6xy+6zx+x^2+y^2+z^2-2yz\)
\(=\left(y-z\right)^2+x\left(6y+6z+x\right)\ge0\) (do \(x;y;z\ge0\))
\(\Rightarrow4M+1\ge0\)
\(\Rightarrow M\ge-\dfrac{1}{4}\)
\(M_{min}=-\dfrac{1}{4}\) khi \(\left\{{}\begin{matrix}x+y+z=1\\x=0\\y=z\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(0;\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b;c\right)=\left(0;\dfrac{1}{4};\dfrac{1}{6}\right)\)