Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tâm đường tròn là \(I\left(a;b\right)\Rightarrow IA=IB=d\left(I;Ox\right)=b\)
\(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a-1;b-1\right)\\\overrightarrow{BI}=\left(a-1;b-4\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a-1\right)^2+\left(b-1\right)^2\\BI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)
\(AI^2=BI^2\Rightarrow\left(b-1\right)^2=\left(b-4\right)^2\)
\(\Rightarrow-2b+1=-8b+16\Rightarrow b=\dfrac{5}{2}\)
Lại có:
\(IA=b\Rightarrow IA^2=b^2\Rightarrow\left(a-1\right)^2+\left(\dfrac{5}{2}-1\right)^2=\left(\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left(a-1\right)^2=4\Rightarrow\left[{}\begin{matrix}a=3\\a=-1\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x-3\right)^2+\left(y-\dfrac{5}{2}\right)^2=\dfrac{25}{4}\\\left(x+1\right)^2+\left(y-\dfrac{5}{2}\right)^2=\dfrac{25}{4}\end{matrix}\right.\)
a)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
với tâm I(a;b) bán kính R
\(d\left(I,Ox\right)=\frac{\left|b\right|}{\sqrt{0^2+1^2}}=\left|b\right|\)
\(d\left(I,Oy\right)=\frac{\left|a\right|}{\sqrt{1^2}}=\left|a\right|\)
Do (C) tiếp xúc với Ox , Oy
\(\Rightarrow\left|a\right|=\left|b\right|=R\\ \Rightarrow a=\pm b\)
Lại có : (C) đi qua điểm có tọa độ (2;1)
\(\Rightarrow\left(2-a\right)^2+\left(1-b\right)^2=b^2\left(vìb^2=R^2\right)\\ \Rightarrow a^2-4a+4+b^2-2b+1=b^2\\ \Leftrightarrow a^2-4a-2b+5=0\left(1\right)\)
TH1: a = b thay vào (1) ta được :
\(\Rightarrow a^2-4a-2a+5=0\\ \Leftrightarrow a^2-6a+5=0\\ \Leftrightarrow a=1hoặca=5\)
với a =1 \(\Rightarrow\) b =1
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=1\)
với \(a=5\Rightarrow b=5\\ \Rightarrow\left(C\right):\left(x-5\right)^2+\left(y-5\right)^2=25\)
TH2 : a = -b thay vào (1) ta được :
\(a^2-4a+2b+5=0\\ \Leftrightarrow a^2-2a+5=0\left(VôNgiệm\right)\)
Vậy có 2 đường tròn (C) cần tìm ở trên
b)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm I (a;b), bán kính R
Do (C) đi qua 2 điểm (1;1) , (1;4) nên ta có :
\(\begin{cases}\left(1-a\right)^2+\left(1-b\right)^2=R^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=R^2\end{cases}\)
\(\Rightarrow\left(1-b\right)^2=\left(4-b\right)^2\\ \Rightarrow b=\frac{5}{2}\)
Lại có : (C) tiếp xúc với Ox
\(d\left(I,Ox\right)=\left|b\right|=R\\ \Rightarrow R=\frac{5}{2}\)
Thay \(b=R=\frac{5}{2}\) vào (1)ta được :
\(\left(1-a\right)^2+\left(1-\frac{5}{2}\right)^2=\frac{25}{4}\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=-1hoặca=3\)
với \(\begin{cases}a=-1\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x+1\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
với \(\begin{cases}a=3\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
Gọi I(a,b) là tâm của đường tròn
vì đường tròn tiếp xúc với 2 trục tọa độ nên tâm I nằm trên 1 trong các tia phân giác của các trục, nói cách khác là I cách đều hai trục tọa độ => |a| = |b|
nhận xét: đường tròn tiếp xúc với 2 trục tọa độ nên cả hình tròn nằm trong 1 trong 4 góc của hệ trục, lại có A(2, -1) thuộc phần tư thứ IV => tâm I thuộc phần tư thứ IV => a > 0, b < 0
như vậy tọa độ tâm là I(a, -a), bán kính R = a, với a > 0
ptrình đường tròn: (x-a)² + (y+a)² = a²
A(2, -1) thuộc đtròn <=> (2-a)² + (-1+a)² = a² <=> a² - 6a + 5 = 0 <=> a = 1 hoặc a = 5
Vậy có 2 đường tròn thỏa yêu cầu là: (x-1)² + (y+1)² = 1 hoặc (x-5)² + (y-5)² = 25
a, Phương trình đường thẳng AB: \(\dfrac{x-3}{2}=\dfrac{y-4}{6}\Leftrightarrow3x-y-5=0\)
Trung điểm I của AB có tọa độ: \(\left\{{}\begin{matrix}x_I=\dfrac{1+3}{2}=2\\y_I=\dfrac{4-2}{2}=1\end{matrix}\right.\Rightarrow I=\left(2;1\right)\)
Phương trình trung trực của AB: \(x+3y-5=0\)
Giả sử \(O=\left(5-3m;m\right)\) là tâm đường tròn
Ta có: \(OA=5\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow\left(3m-4\right)^2+\left(m+2\right)^2=25\)
\(\Leftrightarrow2m^2-4m-1=0\)
\(\Leftrightarrow m=\dfrac{2\pm\sqrt{6}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\\O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\end{matrix}\right.\)
TH1: \(O=\left(\dfrac{4-3\sqrt{6}}{2};\dfrac{2+\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\)
TH2: \(O=\left(\dfrac{4+3\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right)\)
Phương trình đường tròn:
\(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
Kết luận: Phương trình đường tròn:
\(\left(x-\dfrac{4-3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2+\sqrt{6}}{2}\right)^2=25\) hoặc \(\left(x-\dfrac{4+3\sqrt{6}}{2}\right)^2+\left(y-\dfrac{2-\sqrt{6}}{2}\right)^2=25\)
b, Phương trình đường thẳng AC: \(x+y+1=0\)
Phương trình đường thẳng OA: \(x-y-3=0\)
Giả sử \(O=\left(m;m-3\right)\) là tâm đường tròn
Ta có: \(OA=OB\Leftrightarrow\left(1-m\right)^2+\left(1-m\right)^2=\left(3-m\right)^2+\left(7-m\right)^2\)
\(\Leftrightarrow m=\dfrac{7}{2}\)
\(\Rightarrow O=\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)
Bán kính: \(R=OA=\sqrt{\left(1-\dfrac{7}{2}\right)^2+\left(-2-\dfrac{1}{2}\right)^2}=\dfrac{5\sqrt{2}}{2}\)
Phương trình đường tròn:
\(\left(x-\dfrac{7}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)
Giả sử:I(a;b) là tâm của đường tròn cần tìm.
Ta có: R=d(I;Ox)=|b|
Phương trình đường tròn có dạng
(C):(x–a)2+(y–b)2=b2
Vì (1;1)∈(C) và (1;4)∈(C) nên ta có hệ:\(\left\{{}\begin{matrix}\left(1-a\right)^2+\left(1-b\right)^2=b^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=b^2\left(2\right)\end{matrix}\right.\)
Từ hệ trên ta suy ra:(1–b)2=(4–b)2 ⇔ b=\(\dfrac{5}{2}\).
Thay b=\(\dfrac{5}{2}\) vào (1) ta được: a=3,a=−1
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán
(x–3)2+(y–\(\dfrac{5}{3}\))2=\(\dfrac{25}{4}\)
(x+1)2+(y–\(\dfrac{5}{2}\))2=\(\dfrac{25}{4}\)