Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)
Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:
\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
1/ P(x)= x^4 + x^3 +x + 1
= x^3(x+1)+(x+1) *1
= (x+1)(x^3+1)
Nghiệm P(x)khi P(x)=0
hay (x+1)(x^3+1)=0
suy ra x+1=0 do đó x=-1
và x^3+1=0 suy ra x^3=-1 nên x=-1
Vậy P(x) có 1 nghiệm là x=-1
\(P=\dfrac{1}{3}xy\left(x^2+y^2\right)-4x^2\left(xy^2-y\right)+2\left(x^2y-xy^2\right)\)
\(=\dfrac{1}{3}x^3y+\dfrac{1}{3}xy^3-4x^3y^2+4x^2y+2x^2y-2xy^2\)
Lời giải:
a. $(x^3+x^2y+xy^2+y^3)(x-y)=[x^2(x+y)+y^2(x+y)](x-y)$
$=(x^2+y^2)(x+y)(x-y)=(x^2+y^2)(x^2-y^2)=x^4-y^4$
b.
$(2x-1)(x+3)=2x(x+3)-(x+3)=2x^2+6x-x-3=2x^2+5x-3$