K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2024

Lời giải:
a. $(x^3+x^2y+xy^2+y^3)(x-y)=[x^2(x+y)+y^2(x+y)](x-y)$
$=(x^2+y^2)(x+y)(x-y)=(x^2+y^2)(x^2-y^2)=x^4-y^4$
b.

$(2x-1)(x+3)=2x(x+3)-(x+3)=2x^2+6x-x-3=2x^2+5x-3$

5 tháng 9 2020

B1:

Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)

Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:

\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

5 tháng 9 2020

B2:

a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)

Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)

b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)

Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)

17 tháng 5 2016

1. G= 3x2y - 2xy2 + x3y3 + 3xy- 2x2y - 2x3y3

G = x2y + xy2 - x3y3 = xy (x + y -x2y2)  . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)* 4) = 496

 

17 tháng 5 2016

a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x-3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2 

A-B= -( -2x+xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4

Tại x = -1, y =2

A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4

B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10

2 tháng 2 2018

BÀI 2:

a)   Tại   x = 2;   y = -3   thì

                \(2.2^2-3. \left(-3\right)\)\(=8+9\)\(=17\)

b)   Tại  x = 2;  y = -3   thì

              \(\frac{1}{9}.2^3.\left(-3\right)^2-4.2\)\(=8-8\)\(=0\)

1/ P(x)= x^4 + x^3 +x + 1

          = x^3(x+1)+(x+1) *1

          = (x+1)(x^3+1)

     Nghiệm P(x)khi P(x)=0

hay (x+1)(x^3+1)=0

suy ra x+1=0 do đó x=-1

và x^3+1=0 suy ra x^3=-1 nên x=-1

Vậy P(x) có 1 nghiệm là x=-1

Tui chẳng nghĩ gì về số cúp cả

7 tháng 4 2016

trả lời đi t đag cần gấp lắm

4 tháng 6 2017

\(P=\dfrac{1}{3}xy\left(x^2+y^2\right)-4x^2\left(xy^2-y\right)+2\left(x^2y-xy^2\right)\)

\(=\dfrac{1}{3}x^3y+\dfrac{1}{3}xy^3-4x^3y^2+4x^2y+2x^2y-2xy^2\)