\(\inℤ\) để B = \(\frac{3x}{\sqrt{x}+1}\inℤ\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

ko có x để B= 1/2

28 tháng 7 2019

\(T=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x-1}}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x-1}\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\right)\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{x-1}\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{2x+2}{x-1}\)

\(\Rightarrow T=\frac{2x+2}{\sqrt{x}}\)

28 tháng 7 2019

\(T=8\Leftrightarrow\frac{2x+2}{\sqrt{x}}=8\)

\(\Leftrightarrow x+1=4\sqrt{x}\)

\(\Leftrightarrow x^2+2x+1=8x\)

\(\Leftrightarrow x^2-6x+1=0\)

\(\Delta=\left(-6\right)^2-4.1.1=36-4=32,\sqrt{\Delta}=\sqrt{32}\)

Vậy pt có 2 nghiệm phân biệt x1; x2

\(x_1=\frac{6+\sqrt{32}}{2}=3+\sqrt{8}\);\(x_2=\frac{6-\sqrt{32}}{2}=3-\sqrt{8}\)

12 tháng 10 2021

a, Với x >= 0 ; x khác 4 

\(=\frac{x-3\sqrt{x}+2-\left(x+4\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-3\sqrt{x}-3-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-7\sqrt{x}-6-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)

b, \(Q+1>0\Leftrightarrow\frac{-\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}-2}>0\Leftrightarrow\frac{-8}{\sqrt{x}-2}>0\)

\(\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\Rightarrow0\le x< 4\)

c, \(\frac{-\left(\sqrt{x}+6\right)}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2+8\right)}{\sqrt{x}-2}=-1-\frac{8}{\sqrt{x}-2}\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\sqrt{x}-2\)-11-22-44-88
x19016loại36loại100
4 tháng 10 2015

6) \(pt<=>x^4+4x^3+6x^2+4x+1=2x^4+2\)

<=> \(x^4-4x^3-6x^2-4x+1=0\)

dễ thẫy x = 0 không là nghiệm chia cả hai vế cho x^2

\(pt<=>x^2-4x-6-\frac{4}{x}+\frac{1}{x^2}=0\)

<=> \(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)-6=0\)

Đặt x + 1/x = t pt <=> \(t^2-2-4t-6=0\)

Giải pt ẩn t sau đó tìm x 

15 tháng 8 2020

ĐKXĐ: x \(\ge\)0; x \(\ne\)1

a) P = \(\left(\frac{2}{\sqrt{x}-1}-\frac{5}{x+\sqrt{x}-2}\right):\left(1+\frac{3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)

P = \(\left(\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{5}{x+2\sqrt{x}-\sqrt{x}-2}\right):\frac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

P = \(\frac{2\sqrt{x}+4-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\)

P = \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)

b) P = \(\frac{1}{\sqrt{x}}\) <=> \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}=\frac{1}{\sqrt{x}}\)

=> \(\sqrt{x}\left(2\sqrt{x}+1\right)-\sqrt{x}-1=0\)

<=> \(2x+\sqrt{x}-\sqrt{x}-1=0\)

<=> \(x=\frac{1}{2}\)(tm)

c)Với đk: x \(\ge\)0 và x \(\ne\)1

 \(x-2\sqrt{x-1}=0\) (đk: \(x\ge1\))

<=> \(x-1-2\sqrt{x-1}+1=0\)

<=> \(\left(\sqrt{x-1}-1\right)^2=0\)

<=> \(\sqrt{x-1}-1=0\)

<=> \(\sqrt{x-1}=1\)

<=> \(\left(\sqrt{x-1}\right)^2=1\)

<=> \(\left|x-1\right|=1\)

<=> \(\orbr{\begin{cases}x=0\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

Với x = 2 => P = \(\frac{2\sqrt{2}+1}{\sqrt{2}+1}=\frac{\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{4-2\sqrt{2}+\sqrt{2}-1}{2-1}=3-\sqrt{2}\)

15 tháng 8 2020

a) P = \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)(sửa lại)

b)  \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}=\frac{1}{\sqrt{x}}\) => \(2x-\sqrt{x}-\sqrt{x}-1=0\)

<=> \(2x-2\sqrt{x}-1=0\)<=> \(2\left(x-\sqrt{x}+\frac{1}{4}\right)-\frac{3}{4}=0\)

<=>  \(2\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{3}{4}\) <=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{3}{8}\)....(tiếp tự lm)