Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo công thức Brahmagupta bđt \(\Leftrightarrow\)\(\sqrt{\frac{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}{16}-\frac{1}{4}\left(ac+bd\right)^2+\frac{1}{4}u^2v^2}\le\frac{a^2+b^2+c^2+d^2}{4}\)
Gọi u, v là 2 đường chéo của tứ giác, theo bđt Ptolemy ta coa: \(uv\le ac+bd\)\(\Leftrightarrow\)\(\frac{1}{4}u^2v^2\le\frac{1}{4}\left(ac+bd\right)^2\)
Do đó cần CM: \(\sqrt{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}\le a^2+b^2+c^2+d^2\)
\(\Leftrightarrow\)\(\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd\le\left(a^2+b^2+c^2+d^2\right)^2\)
\(\Leftrightarrow\)\(a^4+b^4+c^4+d^4\ge4abcd\) ( đúng theo Cosi )
Dấu "=" xảy ra khi ABCD là hình vuông
Tham khảo tại đây nha:
Câu hỏi của Moe - Toán lớp 9 - Học toán với online math
mã câu :1308090
Câu 1a thì được nè :v
( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2
⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2
⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)
Đặt : 12x + 1 = a , ta có :
( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48
⇔ ( a2 + 3a)( a2 + 3a +2) = 48
Đặt : a3 + 3a = t , ta có :
t( t +2) =48
⇔ t2 + 2t - 48 = 0
⇔ t2 - 6t + 8t - 48 = 0
⇔ t( t - 6) + 8( t - 6) = 0
⇔ ( t - 6)( t + 8) = 0
⇔ t = 6 hoặc t = -8
Tự thế vào mà tìm a sau đó suy ra x nha
Bài 1:
b)
HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Lấy PT(1) trừ 2PT(2) thu được:
\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)
\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)
Thay vào thu được \(\frac{x}{y}=-1\)
Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:
\(X^2-2X-1=0\)
\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)
Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
A B C D E x y
a) Xét tứ giác BEDC có:
\(\widehat{BEC}=\widehat{BDC}\)
\(\widehat{BEC}\)và \(\widehat{BDC}\) cùng nhìn cạnh BC
=> BEDC là tứ giác nội tiếp
b) Do BEDC là tứ giác nội tiếp nên: \(\widehat{BED}+\widehat{BCD}=180^o\)
Mà \(\widehat{BED}+\widehat{DEA}=180^o\Rightarrow\widehat{BCD}=\widehat{DEA}\)(*)
Mặt khác ta có:
\(\widehat{xAB}=\widehat{ACB}\)(cùng chắn cung AB)
hay \(\widehat{xAE}=\widehat{BCD}\)(**)
Từ (*) và (**) suy ra \(\widehat{DEA}=\widehat{xAE}\)
=> xy song song với ED (2 góc sole trong) (đpcm)
c) Do tứ giác BEDC là tứ giác nội tiếp
Mà \(\widehat{EBD}\)và \(\widehat{ECD}\)cùng nhìn cạnh ED
=> \(\widehat{EBD}=\widehat{ECD}\)(đpcm)
d) \(\widehat{BOC}=2\widehat{BAC}=120^o\)
DIện tích hình quạt BOC là: \(S_{qBOC}=\frac{\pi.R.n}{180}=\frac{\pi.2.120}{180}=\frac{4}{3}\pi\left(cm^2\right)\)
\(BC^2=OB^2+OC^2-2.OB.OC.cos120^o=12\Rightarrow BC=2\sqrt{3}\)
OH là đường cao, tam giác BOC cân tại O => BH=1/2.BC=\(\sqrt{3}\left(cm\right)\)
\(OH^2=OB^2-BH^2=2^2-3=1\Rightarrow OH=1\left(cm\right)\)
Diện tích tam giác BOC là: \(S_{\Delta BOC}=\frac{1}{2}.OH.BC=\frac{1}{2}.1.2\sqrt{3}=\sqrt{3}\left(cm^2\right)\)
=> Diện tích hình viên phân là: \(S_{vp}=S_{qBOC}-S_{\Delta BOC}=\frac{4}{3}\pi-\sqrt{3}\left(cm^2\right)\)
xét tg ABCD có \(\widehat{A}+\widehat{C}=180^0\)
\(\Rightarrow\)ABCD là tg nt (O) ( tg có tổng 2 góc đối = 1800 là tg nt )
xét (O) có \(\widehat{DAC}=\widehat{BAC}\)( AC là tia pg của \(\widehat{DAC}\))
\(\Rightarrow\)\(\widebat{DC}=\widebat{BC}\)(2 góc nt = nhau chắn 2 cung = nhau)
\(\Rightarrow\widehat{DBC}=\widehat{BDC}\)( 2 CUNG = NHAU CHẮN 2 GÓC NT = NHAU)
\(\Rightarrow\)\(\Delta BDC\)cân tại C
mà CK là đường trung tuyến của \(\Delta BDC\)(K là trung điểm của BD)
\(\Rightarrow\)CK đồng thời là đường cao , đường trung tuyến , tia pg của \(\Delta BDC\)
\(\Rightarrow\)\(CK\perp BD\) (1)
xét \(\Delta BDE\)là tam giác đều có CK là đường trung tuyến ( k là trung điểm của BD)
\(\Rightarrow\)EK đồng thời là đường cao , trung tuyến và tia phân giác của \(\Delta BDE\)
\(\Rightarrow EK\perp BD\) (2)
TỪ (1) VÀ (2) \(\Rightarrow\)E , C , K thẳng hàng
#mã mã#
a/AB=3;BC=4;AC=5 =>AB vuông góc với BC . Gỉa sử N(a;b)=>AN=a^2+(1-b)^2 ; BN=a^2+(4-b)^2 xong rồi áp dụng pytago vao tam giac ABN ta có: a^2+(1-b)2-a^2-(4-b)2 <=> b=24 => a=0=> N(0;4). Rồi cậu thay tọa độ của N vào pt đường thẳng d tính được m= -12/5
Gọi tọa độ của M(c;d) . cậu tìm pt đường thẳng AD là y=-1/2x +1
vì M vừa thuộc AD vừa thuộc d nên lập hệ : d=-1/2c+1 ; d= -12/5c-5/3 (cậu tự tìm c,d nhé)
A D C B M N
Vì A ^ = D ^ = 90 0 => AD // BC hay ABCD là hình thang vuông tại A, D
Kẻ BE ⊥ DC tại E
Tứ giác ABED có ba góc vuông A ^ = D ^ = E ^ = 90 o nên ABED là hình chữ nhật
Suy ra DE = AB = 6cm; BE = AD = 8cm
Xét tam giác BEC vuông tại E có B C E ^ = 45 0 nên tam giác BEC vuông cân tại E
EC = BE = 8cm DC = DE + EC = 6 + 8 = 14cm
Do đó:
SABCD = A B + C D . A D 2 = 6 + 14 8 2 = 80 c m 2 .
Đáp án cần chọn là: B