K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Mặt phẳng (ABC) chứa đường thẳng AB song song với (Q) nên mp(ABC) cắt mp(Q) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc BC) thì EF là giao tuyến của (Q) và (ABC).

Hai mặt phẳng (ACD) và (ABD) cùng chứa đường thẳng AD song song với (Q) nên chúng cắt mặt phẳng (Q) theo giao tuyến song song với với AD. Vẽ EK song song với AD (K thuộc CD) thì EKFK lần lượt là giao tuyến của mp(Q) với hai mp(ACD) và (BCD).

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Mặt phẳng (SAD) chứa đường thẳng AD song song với mp(P) nên mặt phẳng (P) cắt (SAD) theo giao tuyến  song song với AD. Vẽ EG // AD (G thuộc SD) thì EG là giao tuyến của (P) và (SAD).

Mặt phẳng (SAB) chứa đường thẳng AB song song với mp(P) nên mặt phẳng (P) cắt (SAB) theo giao tuyến  song song với AB. Vẽ EF // AB (F thuộc SB) thì EF là giao tuyến của (P) và (SAB).

Ta có AB // CD, EF // AB suy ra CD // EF hay CD // mp(P)

Mặt phẳng (SCD) chứa đường thẳng CD song song với mp(P) nên mặt phẳng (P) cắt (SCD) theo giao tuyến  song song với CD. Vẽ GH // CD (thuộc SC) thì GH là giao tuyến của (P) và (SCD).

FH thuộc (P), FH thuộc (SBC) suy ra FH là giao tuyến của (P) và (SBC).

Tứ giác EFGH có EF // GH (vì cùng song song với CD) suy ra EFGH là hình thang.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có:

\(\begin{array}{l}MN = \left( \alpha  \right) \cap \left( {ABC} \right)\\PQ = \left( \alpha  \right) \cap \left( {BC{\rm{D}}} \right)\\BC = \left( {ABC} \right) \cap \left( {BC{\rm{D}}} \right)\\MN\parallel BC\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel PQ\parallel BC\) (1).

\(\begin{array}{l}MQ = \left( \alpha  \right) \cap \left( {ABD} \right)\\NP = \left( \alpha  \right) \cap \left( {AC{\rm{D}}} \right)\\A{\rm{D}} = \left( {ABD} \right) \cap \left( {AC{\rm{D}}} \right)\\MQ\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MQ\parallel NP\parallel A{\rm{D}}\) (2).

Từ (1) và (2) suy ra \(MNPQ\) là hình bình hành.

b) Để \(MNPQ\) là hình thoi thì \(MN = NP\).

Ta có:

\(\begin{array}{l}MN\parallel BC \Rightarrow \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\\NP\parallel A{\rm{D}} \Rightarrow \frac{{NP}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}} \Rightarrow \frac{{MN}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}}\end{array}\)

Ta có:

\(\begin{array}{l}\frac{{AN}}{{AC}} + \frac{{CN}}{{AC}} = 1 \Leftrightarrow \frac{{MN}}{{BC}} + \frac{{MN}}{{A{\rm{D}}}} = 1 \Leftrightarrow MN.\left( {\frac{1}{{BC}} + \frac{1}{{A{\rm{D}}}}} \right) = 1\\ \Leftrightarrow MN.\frac{{BC + A{\rm{D}}}}{{BC.A{\rm{D}}}} = 1 \Leftrightarrow MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\end{array}\)

Vậy nếu \(MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\) thì \(MNPQ\) là hình thoi.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Qua M kẻ MH// BC, MI // AD.

mp(P) đi qua M song song với hai đường thẳng AD và BC.

Suy ra mp(P) chứa MH và MI.

Ta có: 

\(\begin{array}{l}\left( {ABC} \right) \cap (P) = MH\\\left( {ABC} \right) \cap (BCD) = BC\end{array}\)

\( \Rightarrow \)MH//BC.

Suy ra, giao tuyến của (P) và (BCD) song song với BC và MH.

Qua I kẻ IK // BC (K thuộc CD) 

Vậy giao điểm của (P) và CD là K.

b) Ta có: 

\(\begin{array}{l}\left( {ABD} \right) \cap (P) = MI\\\left( {ABD} \right) \cap (ACD) = AD\\(P) \cap (ACD) = HK\end{array}\)

\( \Rightarrow \)MI//AD, HK //MI

Tứ giác MHKI có: MH // KI, MI // HK

Suy ra MHKI là hình bình hành \( \Rightarrow \) MH = KI.

Xét tam giác ABC có MH // BC, BM = 3AM

Suy ra BC = 4MH suy ra BC = 4KI.

Xét tam giác BCD có IK // BC, BC = 4KI suy ra \(\frac{{KC}}{{CD}} = \frac{3}{4}\).

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

3
23 tháng 6 2016

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

23 tháng 6 2016

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

7 tháng 10 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + (α) // AC

⇒ Giao tuyến của (α) và (ABC) là đường thẳng song song với AC.

Mà M ∈ (ABC) ∩ (α).

⇒ (ABC) ∩ (α) = MN là đường thẳng qua M, song song với AC (N ∈ BC).

+ Tương tự (α) ∩ (ABD) = MQ là đường thẳng qua M song song với BD (Q ∈ AD).

+ (α) ∩ (BCD) = NP là đường thẳng qua N song song với BD (P ∈ CD).

+ (α) ∩ (ACD) = QP.

b)Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

Suy ra, tứ giác MNPQ có các cạnh đối song song với nhau nên tứ giác MNPQ là hình bình hành.

31 tháng 3 2017

a) (α) // AC, AC ∈(ABC), M là điểm chung của ( α) và (ABC) => (α) ∩ (ABC) = MN // AC. Các giao tuyến sau tương tự

b) Thiết diện là hình bình hành MNPQ

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: a // a’ mà a’ ⊂ (Q) nên a // (Q);

               b // b’ mà b’ ⊂ (Q) nên b // (Q).

Do a // (Q);

      b // (Q);

      a, b cắt nhau tại M và cùng nằm trong mặt phẳng (P)

Suy ra (P) // (Q).

b) Do (R) // (Q) nên trong mp(R) tồn tại hai đường thẳng a’’, b’’ đi qua M và lần lượt song song với a’, b’ trong mp(Q).

Ta có: a // a’, a’’ // a’ nên a // a’’.

Mà a’’ ∈ (R), do đó a // (R)

Do hai mặt phẳng (P) và (R) có một điểm chung nên chúng có đường thẳng chung d.

Ta có:  a // (R);

            a ⊂ (P);

           (P) ∩ (R) = d.

Suy ra a // d.

Mà a, d cùng nằm trong mặt phẳng (P) và cùng đi qua điểm M nên đường thẳng a chính là giao tuyến của hai mặt phẳng (P) và (R).

Chứng minh tương tự ta cũng có đường thằng b cũng là giao tuyến của hai mặt phẳng (P) và (R).

Như vậy, hai mặt phẳng (P) và (R) có hai giao tuyến a và b nên (P) và (R) là hai mặt phẳng trùng nhau.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: MP cắt BC tại E mà BC thuộc (BCD)

Nên: E là giao điểm của đường thẳng MP với mặt phẳng (BCD). 

b) Ta có: EN cắt CD tại Q mà EN thuộc (MNP) 

Nên: Q là giao điểm của đường thẳng CD với mặt phẳng (MNP).

c) Ta có: P thuộc (MNP) và (ACD)

Q thuộc (MNP) và (ACD)

Nên PQ là giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP). 

d) △ACN có: \(\dfrac{AP}{AC}=\dfrac{AG}{AN}=\dfrac{2}{3}\)

Suy ra: PG // CN 

Do đó: △PIG đồng dạng với △NIC

Do đó: C, I, G thẳng hàng.