Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong không gian nếu hai đường thẳng a và b cùng vuông góc với đường thẳng c thì nói chung a và b không song song với nhau vì a và b có thể cắt nhau hoặc có thể chéo nhau.
b) Trong không gian nếu a ⊥ b và b ⊥c thì a và c vẫn có thể cắt nhau hoặc chéo nhau do đó, nói chung a và c không vuông góc với nhau.
Trong không gian nếu hai đường thẳng a và b cùng vuông góc với đường thẳng c thì nói chung a và b không song song với nhau vì a và b có thể cắt nhau hoặc có thể chéo nhau.
Nếu đường thẳng a vuông góc với đường thẳng b thì a có vuông góc với các đường thẳng song song với b.
a) Sai
Sửa lại: "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥ a và Δ ⊥ b"
b) Đúng
c) Đúng
d) Sai
Sửa lại: Đường thẳng đi qua M trên a và vuông góc với a, đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.
e) Sai.
tham khảo
Trong không gian, hai đường thẳng vuông góc với nhau là hai đường thẳng nằm trong hai mặt phẳng vuông góc với nhau
Hai đường thẳng vuông góc với nhau là hai đường thẳng nằm trong 2 mp vuông góc với nhau
+ Trong không gian, hai đường thẳng chéo nhau vẫn có thể vuông góc với nhau.
Đường thẳng a có vectơ chỉ phương u →
Đường thẳng b có vectơ chỉ phương v →
a) Đúng
b) Đúng
c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)
d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.
e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.
Trong không gian nếu a ⊥ b và b ⊥c thì a và c vẫn có thể cắt nhau hoặc chéo nhau do đó, nói chung a và c không vuông góc với nhau.
Ví dụ. Cho hình lập phương ABCD.A’B’C’D’ có:
+ AB và BC cùng vuông góc với BB’ nhưng AB và BC cắt nhau tại B.
+ AB và A’D’ cùng vuông góc với BB’ nhưng AB và BC chéo nhau.