Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
a)
Ta có
\(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
b) Ta có
\(\sqrt{17}+\sqrt{5}+9>\sqrt{16}+\sqrt{4}+9=4+2+9=15\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+9>15\)
Mặt khác
\(\sqrt{115}< \sqrt{225}=15\)
Mà \(\sqrt{17}+\sqrt{5}+9>15\)
\(\Rightarrow\sqrt{115}< \sqrt{17}+\sqrt{5}+9\)
ta có \(\sqrt{7}< \sqrt{9}\)
và \(\sqrt{15}< \sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
mà \(\sqrt{9}+\sqrt{16}=3+4=7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
a) Ta có 290>289
<=> \(\sqrt{290}\) > \(\sqrt{289}\)
<=> \(\sqrt{290}\) > 17
Vậy ..........
\(a,290>289\)
\(\Rightarrow\sqrt{290}>\sqrt{289}\)
\(\Rightarrow\sqrt{290}>17\)
\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
a ) \(\sqrt{7}+\sqrt{15}vs7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)
=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)
\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
a) 1,(3) = 10+(3-1)/9 =12/9 = 4/3
...................
b) chẳng hiu dau bai
c) = 5 ; =7 ; = 10
a/ \(\sqrt{10}< \sqrt{16}=4\)
b/ \(\sqrt{40}>\sqrt{36}=4\)
c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)
d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)
a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)
a: \(=\sqrt{7}+1\)
b: \(=\sqrt{5}+\sqrt{2}\)
c: \(=\sqrt{5}-\sqrt{3}\)
d: \(=2\sqrt{3}-\sqrt{7}\)
a/ \(15< \sqrt{235}\)
b/ \(\sqrt{7}+\sqrt{15}< 7\)
a) \(\text{Vì }15=\sqrt{225}< \sqrt{235}\left(\text{do }225< 235\right)\)
\(\Rightarrow15< \sqrt{235}\)
b) \(\text{Vì }\hept{\begin{cases}\sqrt{7}< \sqrt{9}=3\\\sqrt{15}< \sqrt{16}=4\end{cases}\Rightarrow\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4}=7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)