Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=1/6+1/10+1/15+1/21+1/28+1/36+1/45
A*2=(1/6*+1/10+1/15+1/21+1/28+1/36+1/45)*2
A*2=1/12+1/20+1/30+1/42+1/56+1/72+1/90
A*2=1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9+1/9*10
A*2=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-/8+1/8-1/9+1/9-1/10
A*2=1/3-1/10
A*2=7/30
A=7/30 / 2
A=7/15
đặt A=1/6+1/10+1/15+1/21+1/28+1/36+1/45
6A=1+3/5+2/5+2/7+3/14+1/6+2/15
6A=1+1+7/14+1/6+2/15
6A=14/5
A=14/5:6=7/15
Đặt A = 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Nhân 2 vế với 1/2 để xuất hiện các mẫu là tích của 2 số tự nhiên liên tiếp sau đó áp dụng công thức 1/n.(n + 1) = 1/n - 1/(n + 1) ta có
1/2.A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
1/2.A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
1/2.A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/8 - 1/9 + 1/9 - 1/10
1/2.A = 1- 1/10
1/2.A = 9/10
=> A = 9/5
Đặt A = 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Nhân 2 vế với 1/2 để xuất hiện các mẫu là tích của 2 số tự nhiên liên tiếp sau đó áp dụng công thức 1/n.(n + 1) = 1/n - 1/(n + 1) ta có :
1/2.A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
1/2.A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
1/2.A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/8 - 1/9 + 1/9 - 1/10
1/2.A = 1- 1/10
1/2.A = 9/10
=> A = 9/5
ta có
(1/3+1/6+1/36) +(1/10+1/15+1/45)+(1/21+1/28)
=(\(\frac{12+6+1}{36}\)+\(\frac{9+6+2}{90}\)+\(\frac{4+3}{84}\)
19/36+17/90+1/12
=(19/36+1/12)+17/90
=7/12+17/90
=105/180+34/180
=139/180
1/3 +1/6+1/10+1/15+1/21+1/28+1/36+1/45
=1/1x3+1/3x2+1/2x5+1/3x5+1/3x7+1/7x4+1/4x9+1/9x5
=1/1-1/3+1/3-1/2....+1/9-1/5
=1/1
1 / 6 + 1 / 10 + 1 / 15 + 1 / 21 + 1 / 28 + 1 / 36 + 1 / 45
= 2 / 12 + 2 / 10 + 2 / 30 + 2 / 42 + 2 / 56 + 2 / 72 + 2 / 90
= 2 ( 1 / 3 . 4 + 1 / 4 . 5 + 1 / 5 . 6 + 1 / 6 . 7 + 1 / 7 . 8 + 1 / 8 . 9 + 1 / 9 . 10 )
= 2 .( 1 / 3 - 1 / 4 + 1 / 4 - 1/ 5 + 1 / 5 - 1 / 6 + 1 / 6 - 1 / 7 + 1 / 7 - 1 / 8 + 1 / 8 - 1 / 9 +1 / 9 - 1 / 10)
=2 ( 1 / 3 - 1 / 10 )
= 2. 7 / 30
= 7 / 15
\(P=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\)
\(=2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=2.\dfrac{2}{5}=\dfrac{4}{5}\)
Ta có:
\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\)
=> \(\dfrac{1}{2}A=\dfrac{1}{2}\left(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\right)\text{}\)
\(=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{420}\)
\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{20.21}\)
\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{20}-\dfrac{1}{21}\)
\(=\dfrac{1}{6}-\dfrac{1}{21}\)
\(=\dfrac{5}{42}\)
Vậy \(A=\dfrac{5}{42}\)