K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)

\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)

\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)

\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)

7 tháng 5 2019

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

10 tháng 4 2018

ngày mai mik làm đc ko

10 tháng 4 2018

ok ai giải được giúp mik nha chiều mai mik phải nộp rồi

20 tháng 6 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}=5\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\right)\)

\(=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}\right)\)

\(=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{5}{2}\left(1-\frac{1}{7}\right)=\frac{5}{2}\left(\frac{7}{7}-\frac{1}{7}\right)=\frac{5}{2}.\frac{6}{7}=\frac{15}{7}\)

1 tháng 8 2020

\(M=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(\Rightarrow M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2M=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{1}{3}-\frac{1}{51}\)

\(\Rightarrow2M=\frac{16}{51}\)

\(\Rightarrow M=\frac{8}{51}\)

\(N=\frac{-5}{1.3}+\frac{-5}{3.5}+...+\frac{-5}{2013.2015}\)

\(\Rightarrow N=-\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}\left(1-\frac{1}{2015}\right)\)

\(\Rightarrow N=-\frac{5}{2}.\frac{2014}{2015}\)

\(\Rightarrow N=-\frac{1007}{403}\)

7 tháng 6 2016

a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)

b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

5 tháng 5 2017

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

5 tháng 5 2017

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(B=\frac{510}{103}\)

4 tháng 7 2015

a)\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}=\frac{5}{3}\cdot\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{100.103}\right)\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{170}{103}\)b)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}\cdot\frac{16}{51}=\frac{8}{51}\)

5 tháng 5 2017

Câu a) bạn Ác Mộng làm rồi nên mình làm b) nha

b)Gọi A = \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(2A=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(2A=\frac{1}{3}-\frac{1}{51}\)

\(2A=\frac{16}{51}\)

\(A=\frac{16}{51}:2\)

\(A=\frac{8}{51}\)

13 tháng 4 2019

@@ dùng máy tính mà tính 

Anh làm mẫu 1 phần 

\(\frac{\frac{2}{2017}+\frac{2}{2018}}{\frac{5}{2017}+\frac{5}{2018}}=\frac{2.\left(\frac{1}{2017}+\frac{1}{2018}\right)}{5.\left(\frac{1}{2017}+\frac{1}{2018}\right)}=\frac{2}{5}\)

13 tháng 4 2019

Thanks!

20 tháng 3 2017

a) 2A= 1+1/2^2+1/2^3+...+1/2^2015+1/2^2016

2A-A=(1+1/2+1/2^2+...+1/2^2015+1/2^2016)-(1/2+1/2^2+...+1/2^2016+1/2^2017)

A= 1-1/2^2017

b) B=5.(5/1.6+5/6.11+...+5/26.31)

B=5.(1/5-1/6+1/6-1/11+1/11...-1/26+1/26-1/31)

B= 5.(1/5-1/31)

B=5.26/155

B=26/31

19 tháng 3 2017

cần giải ko, đợi 1 chút 30p sau tôi giúp cho