K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2020

\(I=\int\limits^{\pi}_{-\pi}\frac{3^xcos^2x}{3^x+1}dx\)

Đặt \(x=-t\Rightarrow dx=-dt\)

\(\Rightarrow I=\int\limits^{-\pi}_{\pi}\frac{cos^2t}{3^t+1}\left(-dt\right)=\int\limits^{\pi}_{-\pi}\frac{cos^2t}{3^t+1}dt=\int\limits^{\pi}_{-\pi}\frac{cos^2x}{3^x+1}dx\)

\(\Rightarrow2I=I+I=\int\limits^{\pi}_{-\pi}\left(\frac{3^xcos^2x}{3^x+1}+\frac{cos^2x}{3^x+1}\right)dx=\int\limits^{\pi}_{-\pi}cos^2xdx=\pi\)

\(\Rightarrow I=\frac{\pi}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Câu a: Tích phân không thể tính được

Câu b:

Đặt \(\sqrt{x}=t\). Khi đó:

\(\int ^{\pi ^2}_{0}x\sin \sqrt{x}dx=\int ^{\pi}_{0}t^2\sin td(t^2)\) \(=2\int ^{\pi}_{0}t^3\sin tdt\)

Tính \(\int t^3\sin tdt\) bằng nguyên hàm từng phần:

\(\Rightarrow \int t^3\sin tdt=\int t^3d(-\cos t)=-t^3\cos t+\int \cos t d(t^3)\)

\(=-t^3\cos t+3\int t^2\cos tdt\)

\(=-t^3\cos t+3\int t^2d(\sin t)=-t^3\cos t+3(t^2\sin t-\int \sin td(t^2))\)

\(=-t^3\cos t+3(t^2\sin t-2\int t\sin tdt)\)

\(=-t^3\cos t+3(t^2\sin t-2\int td(-cos t))\)

\(=-t^3\cos t+3[t^2\sin t-2(-t\cos t+\int \cos tdt)]\)

\(=-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c\)

\(\Rightarrow 2\int ^{\pi}_{0}t^3\sin tdt=2(-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c)\left|\begin{matrix} \pi\\ 0\end{matrix}\right.\)

\(=2\pi ^3-12\pi \)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:
Đặt \(2x+1=t\Rightarrow x=\frac{t-1}{2}\)

Khi đó:

\(\int ^{\frac{1}{9}}_{0}\frac{x}{\sin ^2(2x+1)}dx=\frac{1}{2}\int ^{\frac{11}{9}}_{0}\frac{t-1}{\sin ^2t}d(\frac{t-1}{2})=\frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt\)

Xét \(\int \frac{t-1}{\sin ^2t}dt=\int \frac{t}{\sin ^2t}dt-\int \frac{dt}{\sin ^2t}=\int td(-\cot t)-(-\cot t)+c\)

\(=(-t\cot t+\int \cot tdt)+\cot t+c\)

\(=-t\cot t+\int \frac{\cos t}{\sin t}dt+\cot t+c\)

\(=-t\cot t+\int \frac{d(\sin t)}{\sin t}+\cot t+c\)

\(=-t\cot t+\ln |\sin t|+\cot t+c\)

\(\Rightarrow \frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt=\frac{1}{4}(-t\cot t+\ln |\sin t|+\cot t+c)\left|\begin{matrix} \frac{11}{9}\\ 1\end{matrix}\right.\)

\(\approx 0,007\)

AH
Akai Haruma
Giáo viên
3 tháng 12 2017

Lời giải:

Xét \(\int \frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\int \frac{\tan ^2x}{\sin ^2x}dx-\int \frac{\cos ^2x}{\sin ^2x}dx\)

Có:

\(\int \frac{\tan ^2x}{\sin ^2x}dx=\int \frac{\sin ^2x}{\cos ^2x. \sin^2 x}dx=\int \frac{1}{\cos ^2x}dx\)

\(=\int d(\tan x)=\tan x+c\)

Và:

\(\int \frac{\cos ^2x}{\sin ^2x}dx=\int \frac{1-\sin ^2x}{\sin ^2x}dx=\int \frac{1}{\sin ^2x}dx-\int dx\)

\(=-\int d(\cot x)-x+c=-\cot x-x+c\)

Do đó:

\(\int \frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\tan x+c-(-\cot x-x+c)=\tan x+\cot x+x+c\)

\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\frac{4\sqrt{3}}{3}+\frac{\pi}{3}-\frac{4\sqrt{3}}{3}-\frac{\pi}{6}=\frac{\pi}{6}\)

AH
Akai Haruma
Giáo viên
11 tháng 1 2018

Ở tất cả các dạng bài như thế này em chỉ cần ghi nhớ công thức:

\(d(u(x))=u'(x)dx\)

Câu 1)

Ta có \(I_1=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x}\cos xdx=\int _{\frac{\pi}{4}}^{\frac{\pi}{2}}e^{\sin x}d(\sin x)\)

Đặt \(\sin x=t\Rightarrow I_1=\int ^{1}_{\frac{\sqrt{2}}{2}}e^tdt=\left.\begin{matrix} 1\\ \frac{\sqrt{2}}{2}\end{matrix}\right|e^t=e-e^{\frac{\sqrt{2}}{2}}\)

Câu 2)

\(I_2=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}e^{2\cos x+1}\sin xdx=\frac{-1}{2}\int ^\frac{\pi}{2}_{\frac{\pi}{4}}e^{2\cos x+1}d(2\cos x+1)\)

Đặt \(2\cos x+1=t\Rightarrow I_2=\frac{-1}{2}\int ^{1}_{1+\sqrt{2}}e^tdt\)

\(=\frac{-1}{2}.\left.\begin{matrix} 1\\ 1+\sqrt{2}\end{matrix}\right|e^t=\frac{-1}{2}(e-e^{1+\sqrt{2}})\)

AH
Akai Haruma
Giáo viên
11 tháng 1 2018

Câu 3:

Có \(I_3=\int ^{e}_{1}\frac{e^{2\ln x+1}}{x}dx=\int ^{e}_{1}e^{2\ln x+1}d(\ln x)\)

\(=\frac{1}{2}\int ^{e}_{1}e^{2\ln x+1}d(2\ln x+1)\)

Đặt \(2\ln x+1=t\Rightarrow I_3=\frac{1}{2}\int ^{3}_{1}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 1\end{matrix}\right|e^t=\frac{1}{2}(e^3-e)\)

Câu 4:

\(I_4=\int ^{1}_{0}xe^{x^2+2}dx=\frac{1}{2}\int ^{1}_{0}e^{x^2+2}d(x^2+2)\)

Đặt \(x^2+2=t\Rightarrow I_4=\frac{1}{2}\int ^{3}_{2}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 2\end{matrix}\right|e^t=\frac{1}{2}(e^3-e^2)\)

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

1)

Ta có:

\(\int (2-\cot ^2x)dx=\int (2-\frac{\cos ^2x}{\sin ^2x})dx\)

\(=\int (2-\frac{1-\sin ^2x}{\sin ^2x})dx=\int (3-\frac{1}{\sin ^2x})dx=3\int dx-\int \frac{dx}{\sin ^2x}\)

\(=3x+\int d(\cot x)=3x+\cot x+c\)

\(\Rightarrow \int ^{\frac{\pi}{2}}_{\frac{\pi}{3}}(2-\cot ^2x)dx=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{3}\end{matrix}\right|(3x+\cot x+c)=\frac{\pi}{2}-\frac{\sqrt{3}}{3}\)

3)

Xét \(\int (2\tan x-3\cot x)^2dx\)

\(=\int (4\tan ^2x+9\cot ^2x-12)dx\)

\(=\int (\frac{4\sin ^2x}{\cos ^2x}+\frac{9\cos ^2x}{\sin ^2x}-12)dx\)

\(=\int (\frac{4(1-\cos ^2x)}{\cos ^2x}+\frac{9(1-\sin ^2x)}{\sin ^2x}-12)dx\)

\(=\int (\frac{4}{\cos ^2x}+\frac{9}{\sin ^2x}-25)dx\)

\(=4\int d(\tan x)-9\int d(\cot x)-25\int dx\)

\(=4\tan x-9\cot x-25x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(2\tan x-3\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(4\tan x-9\cot x-25x+c)=\frac{26\sqrt{3}}{3}-\frac{25\pi}{6}\)

 

 

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

2)

Xét \(\int (\tan x+\cot x)^2dx=\int (\tan ^2x+\cot ^2x+2)dx\)

\(=\int (\frac{\sin ^2x}{\cos^2 x}+\frac{\cos ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1-\cos ^2x}{\cos ^2x}+\frac{1-\sin ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1}{\cos ^2x}+\frac{1}{\sin ^2x})dx\)

\(=\int d(\tan x)-\int d(\cot x)=\tan x-\cot x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(\tan x+\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(\tan x-\cot x+c)=2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

17 tháng 1 2021

Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ 

Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)

x  -2  -1  1  2  
\(x^2-1\) 00 

\(\left(-2;-1\right):+\)

\(\left(-1;1\right):-\)

\(\left(1;2\right):+\)

\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)

\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)

\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)

Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính 

17 tháng 1 2021

2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)

\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)

\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)

11 tháng 4 2016

\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{2\cos^2x+3\cos x+1}dx\)

Đặt \(\cos x=t\Rightarrow dt=-\sin dx\)

Với \(x=0\Rightarrow t=1\)

Với \(x=\frac{\pi}{2}\Rightarrow t=0\)

\(I=\int\limits^1_0\frac{dt}{2t^2+3t+1}=\int\limits^1_0\frac{dt}{\left(2t+1\right)\left(t+1\right)}=2\int\limits^1_0\left(\frac{1}{2t+1}+\frac{1}{2t+1}\right)dt\)

  \(=\left(\ln\frac{2t+1}{2t+1}\right)|^1_0=\ln\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

a)

Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)

\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)

\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)

b)

\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)

\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

c)

\(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).

Đặt \(x+1=t\)

\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)

\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)

1 tháng 4 2016

\(\int\limits^{\frac{\pi}{4}}_0\frac{x}{\cos^2}dx=\int\limits^{\frac{\pi}{4}}_0x.d\left(\tan x\right)=x.\tan|^{\frac{\pi}{4}}_0-\int\limits^{\frac{\pi}{4}}_0\tan xdx=\frac{\pi}{4}+\ln\left(\cos x\right)|^{\frac{\pi}{4}}=\frac{\pi}{4}-\frac{1}{2}\ln2\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 1)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)

\(\int \left ( \frac{\ln}{x} \right )^2dx=\frac{-\ln^2x}{x}+2\int \frac{\ln x}{x^2}dx\)

Đặt \(\left\{\begin{matrix} t=\ln x\\ dk=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dt=\frac{1}{x}dx\\ k=-\frac{1}{x}\end{matrix}\right.\Rightarrow \int \frac{\ln x}{x^2}dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx=\frac{-\ln x}{x}-\frac{1}{x}\)

\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|\left(\frac{-\ln^2 x}{x}-\frac{2\ln x}{x}-\frac{2}{x}\right)=2-\frac{5}{e}\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 2)

\(I=\int ^{\frac{\pi}{4}}_{0}\frac{x}{1+\cos 2x}dx=\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{x}{\cos^2x}dx\)

Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\tan x\end{matrix}\right.\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{x\tan x}{2}-\frac{1}{2}\int^{\frac{\pi}{4}}_{0} \tan xdx\)

\(=\frac{\pi}{8}+\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{d(\cos x)}{\cos x}=\frac{\pi}{8}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{\ln |\cos x|}{2}=\frac{\pi}{8}+\frac{\ln\frac{\sqrt{2}}{2}}{2}\)