Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=1+2+2^2+...+2^{100}\)
\(2S=2+2^2+2^3+...+2^{101}\)
\(2S-S=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
\(S=2^{101}-1\)
b) \(X=2^{2012}-2^{2011}-...-2-1\)
\(X=2^{2012}-\left(1+2+...+2^{2011}\right)\)
Đặt \(X=2^{2012}-Y\)
Ta có :
\(Y=1+2+...+2^{2011}\)
\(2Y=2+2^2+...+2^{2012}\)
\(2Y-Y=\left(2+2^2+...+2^{2012}\right)-\left(1+2+...+2^{2011}\right)\)
\(Y=2^{2012}-1\)
\(\Rightarrow X=2^{2012}-2^{2012}+1\)
\(\Rightarrow X=1\)
\(\Rightarrow2010X=2010\)
Sửa đề : S= -1/2-1/3-1/4-.....-1/20 + 3/2 + 4/3 + 5/4 + ... + 21/20 . Tính S
\(S=\left(\frac{3}{2}-\frac{1}{2}\right)+\left(\frac{4}{3}-\frac{1}{3}\right)+\left(\frac{5}{4}-\frac{1}{4}\right)+...+\left(\frac{21}{20}-\frac{1}{20}\right)\)
\(S=1+1+1+...+1\)( 20 số 1 )
\(S=20\)
S4 = 12 + 22 + 32 + ... + 492 + 502
S4 = 1 + 2 ( 1 + 1 ) + 3 ( 2 + 1 ) + ... + 49 ( 48 + 1 ) + 50 ( 49 + 1 )
S4 = 1 + 1.2 + 2 + 2.3 + 3 + ... + 48 . 49 + 49 + 49 . 50 + 50
S4 = ( 1 + 2 + 3 + ... 49 + 50 ) + ( 1.2 + 2.3 + ... + 48 . 49 + 49 . 50 )
đặt A = 1 + 2 + 3 + ... 49 + 50
Ta tính được : A = 1275
đặt B = 1.2 + 2.3 + ... + 48 . 49 + 49 . 50
3B = 1.2.3 + 2.3.3 + ... + 48.49.3 + 49.50.3
3B = 1.2.3 + 2.3.(4-1) + ... + 48.49.(50-47) + 49.50.(51-48)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ... + 48.49.50 - 47.48.49 + 49.50.51-48.49.50
3B = 49.50.51
B = 49.50.51 : 3 = 41650
=> S4 = 41650 + 1275 = 42925
S5 = 13 + 23 + 33 + ... 493 + 503
S5 = 1 + 22 ( 1 + 1 ) + 32 ( 2 + 1 ) + ... 492 ( 48 + 1 ) + 502 ( 49 + 1 )
S5 = 12 + 1.22 + 22 + 2.32 + 32 + ... + 48.492 + 492 + 49.502 + 502
S5 = ( 12 + 22 + 32 + ... + 492 + 502 ) + ( 1.22 + 2.32 + ... + 48.492 + 49.502 )
đặt Y = 12 + 22 + 32 + ... + 492 + 502
Y = 42925
đặt M = 1.22 + 2.32 + ... + 48.492 + 49.502
M = 1.2.(3-1) + 2.3.(4-1) + ... + 48.49.(50-1) + 49.50.(51-48)
M = (1.2.3+2.3.4+...+48.49.50+49.50.51)-(1.2+2.3+...+48.49+49.50)
đến đây đơn giản rồi
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
Ta có: \(S=\left(5-\frac{2}{3}+\frac{3}{2}\right)-\left(7-\frac{5}{4}-\frac{1}{2}\right)-\left(1-\frac{4}{3}+\frac{2}{5}\right).\)
\(\Rightarrow S=\left(\frac{13}{3}+\frac{3}{2}\right)-\left(\frac{23}{4}-\frac{1}{2}\right)-\left(\frac{-1}{3}+\frac{2}{5}\right)\)
\(\Rightarrow S=\frac{35}{6}-\frac{21}{4}-\frac{1}{15}\)
\(\Rightarrow S=\frac{7}{12}-\frac{1}{15}=\frac{31}{60}\)
Vậy \(S=\frac{31}{60}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{116}{29}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=4.4=16\Leftrightarrow x=4\\y^2=4.9=36\Leftrightarrow y=6\\z^2=4.16=64\Leftrightarrow z=8\end{cases}}\)
a) Vì \(\left(3x-5\right)^{2006}\ge0\forall x;\left(y-1\right)^{2008}\ge\forall y;\left(x-z\right)^{2100}\ge0\forall x;z\)
Nên \(\left(3x-5\right)^{2006}+\left(y-1\right)^{2008}+\left(x-z\right)^{2100}=0\Leftrightarrow\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\). Vậy x = 5/3; y = 1; z = 5/3
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\)
Áp dụng t/s dãy tỉ số bằng nhau : \(k=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\) ( vì x2+y2+z2=116)
Do đó : \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=\pm4\)
\(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=\pm6\) và \(\frac{z^2}{16}=4\Rightarrow z^2=64\Rightarrow z=\pm8\)
Vậy các cặp (x;y;z) cần tìm là : x=4, y=6, z=8 và x= -4,y= -6,z= -8
\(S=1+2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(\Rightarrow S=2^{101}-1\)
Vậy \(S=2^{101}-1\)