Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x}{x^2-36}+\frac{6-x}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
đkxđ: \(x\ne0;x\ne\pm6\)
MTC=x(x+6)(x-6)
\(=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}+\frac{6-x}{x\left(x+6\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\left[\frac{x^2}{x\left(x^2-36\right)}-\frac{\left(x-6\right)^2}{x\left(x^2-36\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12}{x\left(x-6\right)}-\frac{x^2}{x\left(x-6\right)}\)
\(=\frac{12-x^2}{x\left(x-6\right)}\)
.....................
A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
= \(\left[\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\left[\frac{x^2}{x\left(x-6\right)\left(x+6\right)}-\frac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{\left(x-x+6\right)\left(x+x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
=
= \(\frac{x\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2x-6}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{2x-6}{\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}\) \(-\frac{x}{x-6}\)
= \(\frac{x}{x-6}-\frac{x}{x-6}\)
= 0
a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)
ĐKXĐ \(x\ne-2,-3,-4\)
=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)
=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)
=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)
=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0
=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0
=> -3x2 - 11x - 8 = 0
=> -3x2 - 3x - 8x - 8 = 0
=> -3x(x + 1) - 8(x + 1) = 0
=> (x + 1)(-3x - 8) = 0
=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)
Vậy ...
b) Thiếu dữ liệu cuả đề
c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)
ĐKXĐ \(x\ne-2;-3\)
=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)
=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)
=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)
=> 4x2 + 29x + 52 = x + 4
=> 4x2 + 29x + 52 - x - 4 = 0
=> 4x2 + 28x + 48 = 0
=> 4(x2 + 7x + 12) = 0
=> x2 + 7x +12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 3)(x + 4) = 0
=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
Mà \(x\ne-2,-3\)nên x = -3 loại
Vậy x = -4
= ( x/(x-6)(x+6) - x-6/x(x+6) ) : 2x-6/x2 + 6x + 6/6-x
=( x2/x(x+6)(x-6) - (x -6 )(x-6)/x(x+6)(x-6) ) : .....
= (12x -36 / x(x+6)(x-6) : 2x-6/ x2 + 6x )+ 6/6-x
=6/x-6 + 6/6-x
= 6-6/ x-6
=0/x-6
câu trước mình thiếu 6/6-x
Xem lại đề gõ thiếu không? Ở \(\frac{2x-6}{x^2+6}\) phải là \(\frac{2x-6}{x^2+6x}\) chứ nhỉ
Sửa lại đề của bạn nhé
\(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\\ =\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\left(\frac{x^2}{x\left(x-6\right)\left(x+6\right)}-\frac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\frac{\left(x-x+6\right)\left(x+x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\frac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\frac{6x\left(2x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(2x-6\right)}+\frac{-x}{x-6}\\ =\frac{6}{x-6}+\frac{-x}{x-6}\\ =\frac{6-x}{x-6}\\ =-1\left(đpcm\right)\)
\(a)A=(\frac{x}{(x+6)(x+6)}-\frac{x-6}{x(x+6)})\cdot\frac{x(x+6)}{2x-6}+\frac{x}{x-6}\)
\(A=\frac{x^2-(x-6)^2}{x(x+6)(x-6)}\cdot\frac{x(x+6)}{2x-6}-\frac{x}{x-6}=\frac{(x-x+6)(x+x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}\)
\(=\frac{6(2x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}=\frac{6}{(x-6)}-\frac{x}{x-6}\cdot\frac{6-x}{x-6}=-1\)
\(b)\text{A luôn = -1 với mọi x}\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
\(\frac{x^2-49}{x-7}+x-2=x+7+x-2=2x+9\)
\(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right)\frac{x^2+6x}{2x-6}\)
\(=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right)\frac{x\left(x+6\right)}{2\left(x-3\right)}\)
\(=\frac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2\left(x-3\right)}=\frac{6\left(2x-6\right)}{x\left(x-6\right)}.\frac{x}{2\left(x-3\right)}\)
\(=\frac{12x}{2x\left(x-6\right)}=\frac{6}{x-6}\)