Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=11+14+17+...+62+65\)
Số số hạng của \(A\)là
\(\left(65-11\right)\div3+1=19\)(số hạng)
Tổng của \(A\)là:
\(\left(11+65\right)\times19\div2=722\)
Đáp số: 722
\(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(B=\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+.....+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\times\frac{1}{2}\)
\(B=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{9}-\frac{1}{11}\right)\times\frac{1}{2}\)
\(B=\left(1-\frac{1}{11}\right)\times\frac{1}{2}\)
\(B=\frac{10}{11}\times\frac{1}{2}\)
\(B=\frac{5}{11}\)
\(C=\frac{3}{10}+\frac{3}{40}+\frac{3}{88}+\frac{3}{154}\)
\(C=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(C=\left(\frac{3}{2}-\frac{3}{5}+\frac{3}{5}-\frac{3}{8}+....+\frac{3}{11}-\frac{3}{14}\right)\div3\)
\(C=\left(\frac{3}{2}-\frac{3}{14}\right)\div3\)
\(C=\frac{9}{7}\div3\)
\(C=\frac{3}{7}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(B=1-\frac{1}{11}\)
\(B=\frac{10}{11}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\)
\(A=\frac{1}{3}-\frac{1}{101}\)
\(A=\frac{98}{303}\)
A = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
= \(\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right):2\)\(=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)
= \(\left(\frac{1}{3}-\frac{1}{101}\right):2=\frac{101-3}{303}:2=\frac{98}{303}:2=\frac{49}{303}\)
Dấu chấm trong bài là dấu nhân nha !
1/3x5 +1/5x7+1/7x9 +1/9x11+...+1/99x101
1/3-1/5+1/5-1/7+...+1/99-1/101
1/3-1/101
98/303
A = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{129.15}\)
A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{129.15}\)
A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{129}-\frac{1}{15}\)
A = \(\frac{1}{3}-\frac{1}{15}\)= \(\frac{5}{15}-\frac{1}{15}\)
A = \(\frac{4}{15}\)
CẢM ƠN LỜI GỢI Ý
kết quả đúng là 7/45 nhé