Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{2020}\left(1+2+3+...+2020\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{2020}.\frac{2020.2021}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)
\(=\frac{\left[\left(2021-2\right)+1\right]\left(2021+2\right)}{2}:2\)
\(=1021615\)
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)
\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)