Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a) M = \(\left(\frac{6x}{x^2-9}-\frac{1}{x+3}+\frac{5}{3-x}\right):\frac{4}{x^2-3x}\)
M = \(\left(\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{x-3}{\left(x+3\right)\left(x-3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\cdot\frac{x^2-3x}{4}\)
M = \(\left(\frac{6x-x+3-5x-15}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x\left(x-3\right)}{4}\)
M = \(\frac{-12.x\left(x-3\right)}{\left(x-3\right)\left(x+3\right).4}\)
M = \(-\frac{3x}{x+3}\)
b) Với x = 2 => M = \(-\frac{3.2}{3+2}=-\frac{6}{5}\)
Đề sai sửa luôn !
\(a,M=\left(\frac{21}{x^2-9}+\frac{4-x}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21-\left(4-x\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\frac{x+3-1}{x+3}\right)\)
\(=\frac{21-4x-12+x^2+3x-x^2+3x+x-3}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{3}{x-3}\)
\(b,x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Kết hợp ĐKXĐ => x = 2
Thay vào \(M=\frac{3}{2-3}=\frac{3}{-1}=-3\)
Vậy ...........................
Bài 1:
a) Rút gọn:
\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right).\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{\left(3-x\right).\left(x+3\right)^2}{\left(x+3\right).\left(x-3\right).\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-\left(x-3\right).\left(x+3\right)^2}{\left(x+3\right)^2.\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(-1+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-1.\left(x+3\right)}{x+3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-x-3}{x+3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-x-3+x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\frac{-3}{x+3}:\frac{3x^2}{x+3}\)
\(A=\frac{-3}{x+3}.\frac{x+3}{3x^2}\)
\(A=\frac{-3.\left(x+3\right)}{\left(x+3\right).3x^2}\)
\(A=\frac{-1}{x^2}.\)
b) Ta có:
\(\left|x\right|=-\frac{1}{2}\)
Vì \(\left|x\right|\ge0\) \(\forall x.\)
\(\Rightarrow\left|x\right|>-\frac{1}{2}\)
\(\Rightarrow\left|x\right|\ne-\frac{1}{2}\)
\(\Rightarrow x\in\varnothing.\)
Vậy biểu thức A không có giá trị tại \(\left|x\right|=-\frac{1}{2}.\)
Chúc bạn học tốt!
Bài 1: Cho biểu thức: \(A=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
a) Rút gọn biểu thức \(A\)
\(A=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-\left(x-3\right)\left(x+3\right)\left(x+3\right)}{\left(x+3\right)\left(x+3\right)\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(-1+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-x-3}{x+3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\frac{-3}{x+3}:\frac{3x^2}{x+3}\)
\(A=\frac{-3}{x+3}\cdot\frac{x+3}{3x^2}\)
\(A=\frac{-3\left(x+3\right)}{\left(x+3\right)3x^2}\)
\(A=\frac{-1}{x^2}\)
a: ĐKXĐ: x<>3; x<>-3; \(x\ne-5\pm\sqrt{34}\)
b: \(=\dfrac{x^2+5x+6+5x-15}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{2x\left(x-3\right)\left(x+3\right)}{x^2+10x-9}\)
=2x
c: Khi x=1/2 thì A=2*1/2=1
\(1.x^2-4x+4=8\left(x-2\right)^5\)
\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)
\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)
\(=4a^2-4ab+3b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a+b\right)^2=-2\)
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
a) M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2)
= 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)
= 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4
= -22x - 55 = -11(2x + 5)
b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)
b) M = -11(2x + 5) = 0
\(\Rightarrow\)2x + 5 = 0
\(\Rightarrow\)x = \(\frac{-5}{2}\)
Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)
b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)
\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)
c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)
Vậy \(x=\frac{-5}{2}\)
a) Thực hiện rút gọn A = - m 3 – 5.
Thay m = 5 vào tính được A = -130.
b) Thực hiện rút gọn B = -8x + 28.
Thay x = 3 vào tính được B = 4.