Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.
Dùng hằng đẳng thức đáng nhớ thôi b
Ta có y2 - x2 = (y - x)(y + x)
Mà theo đêc bài thì mẫu có (y + x) rồi nên chỉ cần nhân cho (y - x) nữa là được
Làm như vầy là sai hướng rồi.
Tham khảo :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)
\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)
\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
1) = x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x - 1
= 6x^2
2) = x^3 + 1 - ( x^3 - 1 )
= x^3 + 1 - x^3 + 1
= 2
3) dài lắm thôi ko viết ( Bạn áp dụng cái NHÂN ĐA THỨC VỚI ĐA THỨC nhé )
Học tốt ~
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)
\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)
\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)
\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)
\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
Vậy A = 1
\(\frac{4\left(x-y\right)^5+2\left(x-y\right)^3-\left(x-y\right)^2}{\left(y-x\right)^2}\)
\(=\frac{4\left(x-y\right)^5+2\left(x-y\right)^3-\left(x-y\right)^2}{\left(x-y\right)^2}\)
\(=4\left(x-y\right)^3+2\left(x-y\right)-1\)
Điều kiện
\(x\ne y\)
A=\(-4\left(x-y\right)^3-2\left(x-y\right)+1\)