K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=1-\frac{1}{2^{100}}\)

\(A=1-\frac{1}{2^{100}}\)

25 tháng 6 2018

A = 1 + \(\frac{1}{2}\left(1+2\right)\)\(\frac{1}{3}\left(1+2+3\right)\)+ .... + \(\frac{1}{100}\left(1+2+3+...+100\right)\)

A = \(1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)

A = \(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

A = \(\frac{2+3+4+...+101}{2}\)

A = \(\frac{\left(101+2\right).100}{2}\div2\)

A  = \(5150\div2=2575\)

12 tháng 4 2017

A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101

A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=

= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)

=[1-(1/2)^101]/(1-1/2) -100/2^101 =

=(2^101 -1)/2^100 - 100/2^101

=> A= (2^101 -1)/2^99 - 100/2^100

7 tháng 2 2016

minh biet lam ne nhung ban phai cho minh nhe

 

7 tháng 2 2016

ai giup minh lam bai nay voi 

thanks nhieu

 

30 tháng 10 2015

A = 12 + 22 + 32 + ... + 1002

   = 1.1 + 2.2 + 3.3 + ... + 100.100

   = 1.1 + 2.(1+1) + 3.(2+1) + ... + 100.(99+1)

   = ( 1.2 + 2.3 + ... + 99.100 ) + ( 1 + 2 + 3 + ... + 100 )

   = 333300 + 5050

   = 338350

30 tháng 10 2015

mk nghĩ đây là toán lớp 6