K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Ta có: x=9 ⇒10=x+1

Thay 10=x+1 vào A ta được:

A= x14-(x+1)x13 + (x+1)x12 - (x+1)x11+......-(x-1)x + (x+1)

A=x14 - x14 - x13 + x13 + x12 - x12 - x11 +.......- x2 - x + x+1

A=(x14 - x14) -( x13 - x13 )+ (x12 - x12 ) - (x11 - x11 )......- (x - x)+1

A= 1

25 tháng 7 2016

phan h 10=9+1

28 tháng 8 2016

 x=9=>10=x+1

thqy 10=x+1 vào A

ta có A=x^14 - (x+1)x^13+(x+1)x^12-(x+1)x^11+...+(x+1)x^2-(x+1)x+10

          =x^14-x^14-x^13+x^13+x^12-x^12-x^11+...+x^3+x^2-x^2_x+10

          =x+10

          mà x=9 

         =>A=19

22 tháng 2 2017

Mk k ghi lại đề mà lm lun nha!

= 914 - (9+1)913 + (9+1)912 - (9+1)911 +...+ (9+1)92 - (9+1)9 + 10

= 914 - 914  - 913  + 913 + 912 - 912 - 911 +...+ 93 + 92 -92 + 9 +10

= 9 + 10 = 19

Bài mk giải k pk kết quả đúng or sai, có j sửa giùm mk lun nha

9 tháng 4 2019

Bằng 19 nhà bạn anh mình lấy. Nick mình

27 tháng 7 2018

\(A=x^{14}-10x^{13}+10x^2-10x^{11}\)\(+...+10x^{12}-10x+10\)

Thay x = 9 vào biểu thức A

\(\Rightarrow A=9^{14}-\left(9+1\right).9^{13}+\left(9+1\right).9^{12}\)\(-...+9+1\)

\(\Rightarrow A=9^{14}-9^{14}-9^{13}+9^{12}+...-9+9+1\)

\(\Rightarrow A=1\)

P/s tham khảo thêm trên google 

11 tháng 7 2018

Ta có 10=9+1=x+1(Vì x=9)

=>B= x14-(x+1)x13+(x+1)x12-(x+1)x11+.........-(x+1)x+10

=>B= x14-x14-x13+x13+x12-x12-x11+.....-x2-x+10

=>B=-x+10

Thay x=9, ta có

B=-9+10=1

3 tháng 9 2018

\(B=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

13 tháng 6 2018

\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...-10x+10=x^{14}-9x^{13}-x^{13}+9x^{12}+x^{12}-...-9x-x+9+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-...-x^2-x+x+1=1\)

21 tháng 8 2017

a)    Ta có : \(x=31\Rightarrow30=x-1\)

Thay vào biểu thức ta được:

\(A=x^3-\left(x-1\right).x^2-x^2+1=x^3-x^3+x^2-x^2+1=1\)

b) Ta có: \(x=9\Rightarrow x+1=10\)

Thay vào biểu thức ta được

\(B=x^{14}-\left(x+1\right).x^{13}+\left(x+1\right).x^{12}-\left(x+1\right).x^{11}+.....+x^2.\left(x+1\right)=\left(x+1\right).x+\left(x+1\right)\)

\(\Leftrightarrow B=x^{14}-x^{14}-x^{13}+x^{13}+....+x^3+x^2=x^2+2x+1\)

\(\Leftrightarrow B=x^2-x^2-2x-1=-2.9-1=-19\)

3 tháng 9 2018

\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

14 tháng 3 2016

\(a.\)  Vì  \(x=14\)  \(\Rightarrow\)  \(x+1=15;\)  \(x+2=16;\)  \(2x+1=29;\)  và  \(x-1=13\)

Khi đó, biểu thức trên trở thành: 

\(x^5-15x^4+16x^3-29x^2+13x=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

                                                                     \(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

 \(x^5-15x^4+16x^3-29x^2+13x=-x=-14\) 

\(b.\)  Làm tương tự

                                                                     - Charlotte-

3 tháng 9 2018

\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)