Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có vì x, y là các số tự nhiên nên
\(\hept{\begin{cases}3xy\ge0\left(1\right)\\2x\ge0\left(2\right)\\2y\ge0\left(3\right)\end{cases}}\)
Từ đó ta có
\(3xy+2x+2y\ge0\)
Dấu = xảy ra khi \(x=y=0\)
3xy + 2x + 2y = 0
=> x.(3y + 2) = -2y
=> \(x=\frac{-2y}{3y+2}\)
Do \(x\in N\Rightarrow3y+2\inƯ\left(-2y\right)\)
Mà 3y + 2 > -2y do y ϵ N => -2y = 0
=> y = 0; x = 0
Vậy x = y = 0
Bài này thêm điều kiện là: x,y thuộc Z nha ko là ko lm đc đâu
a, (x+5)(y-3)=15
x+5 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-3 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -20 | -10 | -8 | -6 | -4 | -2 | 0 | 10 |
y | 2 | 0 | -2 | -12 | 18 | 8 | 6 | 4 |
Vậy có 8 cặp(x;y):...
các ý còn lại tương tự
Bài giải
Mình làm câu a các câu b , d bạn làm tương tự nha !
a, \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow\text{ }x+5\text{ , }y-3\inƯ\left(15\right)\)
x + 5 | - 1 | 1 | - 3 | 3 | - 5 | 5 | - 15 | 15 |
y - 3 | - 15 | 15 | - 5 | 5 | - 3 | 3 | - 1 | 1 |
x | - 6 | - 4 | - 8 | - 2 | - 10 | 0 | - 20 | 10 |
y | - 12 | 18 | - 2 | 8 | 0 | 6 | - 2 | 4 |
Vậy các cặp \(\left(x,y\right)=\text{ }...\)
c, \(xy+y+x=30\)
\(y\left(x+1\right)+x=30\)
\(y\left(x+1\right)+\left(x+1\right)=31\)
\(\left(y+1\right)\left(x+1\right)=31\)
Đến đây làm tương tự câu a nha !
Câu e để mình nghĩ tí đã nha !
Lời giải:
a. $2y(3x-1)+9x-3=7$
$2y(3x-1)+3(3x-1)=7$
$(3x-1)(2y+3)=7$
Vì $3x-1, 2y+3$ đều là số nguyên với mọi $x,y\in N$, và $2y+3>0$ nên ta có bảng sau:
b.
$3xy-2x+3y-9=0$
$x(3y-2)+3y-9=0$
$x(3y-2)+(3y-2)-7=0$
$(3y-2)(x+1)=7$
Đến đây bạn cũng lập bảng tương tự như phần a.
x^3+y^3=3xy-1
x^3+y^3-3xy+1=0
(x+y)^3-3xy(x+y)-3xy+1=0
(x+y+1)(x^2+2xy+y^2-x-y+1)-3xy(x+y+1)=0
(x+y+1)(x^2+2xy+y^2-x-y+1-3xy)=0
suy ra +)x+y+1=0.VÌ x,y thuộc N* nên x+y+1 khác 0
+)x^2-xy+y^2+1-x-y=0
2(x^2-xy+y^2+1-x-y)=0
2x^2-2xy+2y^2+2-2x-2y=0
(x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=0
(x-y)^2+(x-1)^2+(y-1)^2=0
suy ra +)x-y=0
+)x-1=0
+)y-1=0
Vậy x=y=1