Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
a: Ta có: 2x/3=3y/4=4z/5
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Đặt \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=k\)
=>x=3/2k; y=4/3k; z=5/4k
\(xy+yz-xz=32\)
\(\Leftrightarrow\dfrac{3}{2}k\cdot\dfrac{4}{3}k+\dfrac{4}{3}k\cdot\dfrac{5}{4}k-\dfrac{3}{2}k\cdot\dfrac{5}{4}k=32\)
\(\Leftrightarrow k^2\cdot\dfrac{43}{24}=32\)
\(\Leftrightarrow k^2=\dfrac{768}{43}\)
Trường hợp 1: \(k=\dfrac{16\sqrt{129}}{43}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{24\sqrt{129}}{43}\\y=\dfrac{64\sqrt{129}}{129}\\z=\dfrac{20\sqrt{129}}{43}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{16\sqrt{129}}{43}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{24\sqrt{129}}{43}\\y=-\dfrac{64\sqrt{129}}{129}\\z=-\dfrac{20\sqrt{129}}{43}\end{matrix}\right.\)
b: Ta có: 4x=3y
nên x/3=y/4=k
=>x=3k; y=4k
\(x^2-xy+y^2=32\)
\(\Leftrightarrow9k^2-12k^2+16k^2=32\)
\(\Leftrightarrow13k^2=32\)
Trường hợp 1: \(k=\dfrac{32\sqrt{13}}{13}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{96\sqrt{13}}{13}\\y=\dfrac{128\sqrt{13}}{13}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{32\sqrt{13}}{13}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{96\sqrt{13}}{13}\\y=-\dfrac{128\sqrt{13}}{13}\end{matrix}\right.\)
\(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4\ge0\\\left(3x-2y\right)^2\ge0\end{cases}}\Rightarrow\left|x^2+y^2+z^2-1\right|+\left(3y-4z\right)^4+\left(3x-2y\right)^2\ge0\)
dấu = xảy ra khi \(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4=0\\\left(3x-2y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\3y=4z\\3x-2y=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\y=\frac{4z}{3}\\x=\frac{2y}{3}\end{cases}}\)
Vậy ...
p/s bài này chắc chỉ có dạng chung thôi bn :)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!
Answer:
a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(5z^2-3x^2-2y^2=594\)
\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)
\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)
\(\Rightarrow125k^2-27k^2-32k^2=594\)
\(\Rightarrow k^2.\left(125-27-32\right)=594\)
\(\Rightarrow k^2.66=594\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)
Answer:
b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)
Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)
\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)
\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)