K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Đồ thị của hàm số y = ax + b ( a khác 0)

a) xa =-1 =>ya =1/2.(-1)^2 =1/2=> A(-1;1/2)

xb=2 =>yb =1/2.2^2 =2=> B(2;2)

\(\left\{{}\begin{matrix}\dfrac{1}{2}=-m+n\\2=2m+n\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2m+2n=1\\2m+n=2\end{matrix}\right.\)=> n=1; m =1/2

b) \(AB=\sqrt{\left(x_b-x_a\right)^2+\left(y_b-y_a\right)^2}=\sqrt{3^2+\left(\dfrac{3}{2}\right)^2}=\sqrt{\dfrac{3^2\left(4^2+1\right)}{4^2}}=\dfrac{3\sqrt{17}}{4}\)\(S\Delta_{AOB}=\dfrac{1}{2}\left(\left|x_a\right|+\left|x_b\right|\right)\left(y_b-y_a\right)=\dfrac{1}{2}\left(1+2\right).\left(2-\dfrac{1}{2}\right)=\dfrac{1}{2}.3.\dfrac{3}{2}=\left(\dfrac{3}{2}\right)^2\)\(S_{\Delta AOC}=\dfrac{1}{2}OH.AB\)

\(OH=2.\dfrac{\dfrac{9}{4}}{\dfrac{3\sqrt{17}}{4}}=\dfrac{6}{\sqrt{17}}=\dfrac{6\sqrt{17}}{17}\)

3 tháng 6 2016

\(pt\Leftrightarrow\left(x^2-7\right)y^2-4xy-x^2=0\)

\(\Delta'\text{ }_y=4x^2+x^2\left(x^2-7\right)=x^4-3x^2=x^2\left(x^2-3\right)\)

Do x thuộc Z nên để y thuộc Z thì Delta phải là số chính phương

hay \(x^2\left(x^2-3\right)\)là số chính phương, hay \(x^2-3=k^2\text{ }\left(k\in N\right)\)

Giải được 1 số giá trị của x, thay lại phương trình ban đầu để tìm ra các giá trị của y.

3 tháng 6 2016

Nguyen huy thang 

vao giup cai nao

19 tháng 5 2019

Lâu rồi  hổng thấy ai giải nên giải luôn ak 

Ta có \(5x^2+2xy+2y^2=\left(2x+y\right)^2+\left(x-y\right)^2\ge\left(2x+y\right)^2\Rightarrow\sqrt{5x^2+2xy+2y^2}\ge2x+y.\)

           \(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\Rightarrow\sqrt{2x^2+2xy+5y^2}\ge x+2y.\)

Suy ra \(Q\ge3\left(x+y\right)=3.1=3\)dấu = xảy ra khi \(\hept{\begin{cases}x+y=1\\x-y=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}\)

NV
4 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=m-6\\\left(m+3\right)x-2y=4m-13\end{matrix}\right.\)

Theo điều kiện có nghiệm duy nhất của hệ thì:

\(\frac{m+3}{1}\ne\frac{-2}{-1}\Leftrightarrow m\ne-1\)

Khi đó: \(\left\{{}\begin{matrix}x-y+6=m\\3x-2y+13=4m-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y+6=m\\\frac{3x-2y+13}{4-x}=m\end{matrix}\right.\) \(\Rightarrow x-y+6=\frac{3x-2y+13}{4-x}\)

Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m

Muốn chắc chắn hơn, bạn có thể biện luận riêng trường hợp \(x=4\)

28 tháng 12 2015

xyz=2y*4z/3x

xyz*3x=8yz

3x2=8

x2=8/3

x=\(\sqrt{\frac{8}{3}}\)

16 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{4}{2y}=\dfrac{1^2}{x}+\dfrac{2^2}{2y}\)

\(\ge\dfrac{\left(1+2\right)^2}{x+2y}=\dfrac{3^2}{3}=3\)

Đẳng thức xảy ra khi \(x=y=1\)