Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)
\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)
Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).
Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).
\(B=2a^2+b^2+c^2-ab+ac+bc\)
\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)
\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)
\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)
Dấu \(=\)khi \(a=b=c=0\).
Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).
1.
a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm)
suy ra đpcm
b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)
c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)
d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)
\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)
Bài 1:
a) x2 + y2 - 2x + 10y + 26 = 0
<=> (x2 - 2x + 1) + (y2 + 10y + 25) = 0
<=> (x - 1)2 + (y + 5)2 = 0 (*)
Vì (x - 1)2 \(\ge\)0; (y + 5)2 \(\ge\)0
(*) <=> x - 1 = 0 hay y + 5 = 0
<=> x = 1 I <=> y = -5
b) 64x3 + 48x2 + 12x + 1 = 27
<=> 64x3 - 32x2 + 80x2 - 40x + 52x + 1 - 27 = 0
<=> 64x3 - 32x2 + 80x2 - 40x + 52x - 26 = 0
<=> 64x2(x - \(\frac{1}{2}\)) + 80x(x - \(\frac{1}{2}\)) + 52(x - \(\frac{1}{2}\)) = 0
<=> (x - \(\frac{1}{2}\))(64x2 + 80x + 52) = 0
<=> (x - \(\frac{1}{2}\))[(8x)2 + 2.8x.5 + 52 + 27) = 0
<=> (x - \(\frac{1}{2}\))[(8x + 5)2 + 27) = 0
<=> x - \(\frac{1}{2}\)= 0 (vì (8x + 5)2 + 27 > 0
<=> x = \(\frac{1}{2}\)
Bài 2:
a) x2 + 2xy + y2
= (x + y)2
= 32 = 9
b) x2 - 2xy + y2
= x2 + 2xy + y2 - 4xy
= (x + y)2 - 4xy
= 32 - 4.(-10)
= 9 + 40 = 49
c) x2 + y2
= x2 + 2xy + y2 - 2xy
= (x + y)2 - 2xy
= 32 - 2.(-10)
= 9 + 20 = 29
3x2 + y2 + 10x - 2xy + 2021 = 0
<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x +\(\frac{25}{2}\)) +\(\frac{4017}{2}\)= 0
<=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)= 0
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\2\left(x+\frac{5}{2}\right)^2\ge0\end{cases}}\forall x\)=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)\(\ge\frac{4017}{2}\)
=> Không có giá trị x ; y thỏa mãn pt trên
3x2 + y2 + 10x - 2xy + 2021 = 0
<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x + 25/2 ) + 4017/2 = 0
<=> ( x - y )2 + 2( x2 + 5x + 25/4 ) + 4017/2 = 0
<=> ( x - y )2 + 2( x + 5/2 )2 + 4017/2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\2\left(x+\frac{5}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2+\frac{4017}{2}\ge\frac{4017}{2}>0\forall x,y\)
Tức là (*) sai
=> Không có giá trị x, y thỏa mãn
Bài 1 dễ thì tự làm
Bài 2
\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0
\(\Rightarrow y=-x\)
\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)
Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)