Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x:y=4:7\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số "=" nhau :
\(\Rightarrow\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{24}{-3}=-8\)
\(\Rightarrow x=-32;y=-56\)
Ta có :
\(x:y=\frac{4}{7}\)\(\Rightarrow\)\(\frac{x}{y}=\frac{4}{7}\)\(\Rightarrow\)\(\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{24}{-3}=-8\)
+) \(\frac{x}{4}=-8\)\(\Rightarrow\)\(x=-32\)
+) \(\frac{y}{7}=-8\)\(\Rightarrow\)\(y=-56\)
Vậy x = -32 và y = -56
_Chúc bạn học tốt_
a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)
b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{2x}{14}=\dfrac{2x-y}{14-6}=\dfrac{120}{8}=15\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.7=105\\y=15.6=90\end{matrix}\right.\)
Từ x:y = 4:5 => \(\frac{x}{y}=\frac{4}{5}\) => \(\frac{x}{5}=\frac{y}{4}\) => \(\frac{x}{55}=\frac{y}{44}\)
x:z = 7:11 => \(\frac{x}{z}=\frac{7}{11}\) => \(\frac{x}{11}=\frac{z}{7}\) => \(\frac{x}{55}=\frac{z}{35}\)
=> \(\frac{x}{55}=\frac{y}{44}=\frac{z}{35}\)
Đặt: \(\frac{x}{55}=\frac{y}{44}=\frac{z}{35}=k\Rightarrow\begin{cases}x=55k\\y=44k\\z=35k\end{cases}\)
Lại có BCNN(x,y,z) = 11.5.4.7k = 1540k = 4620 => k = 3
=> \(\begin{cases}x=165\\y=132\\z=105\end{cases}\)
\(x-y=13\Leftrightarrow y=x-13\)
Do thế \(\frac{x}{y}=\frac{4}{5}\Leftrightarrow\frac{x}{x-13}=\frac{4}{5}\Leftrightarrow5x=4\left(x-13\right)\)
\(\Leftrightarrow5x=4x-52\Leftrightarrow x=-52\Leftrightarrow y=-52-13=-65\)
Ta có: x : y = 4 : 5 => x/4 = y/5
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
=> \(\hept{\begin{cases}\frac{x}{4}=-13\\\frac{y}{5}=-13\end{cases}}\) => \(\hept{\begin{cases}x=-13.4=-52\\y=-13.5=-65\end{cases}}\)
Vậy ...
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=6hoặc-6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=8hoặc-8\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(x:y=3:4\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
vậy:
x/3=4 =>x=4.3=12
y/4=4 =>y=4.4=16
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
Ta có:\(\frac{x}{y}=\frac{4}{7}\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{24}{-3}=-8\)
Khi đó :
\(\frac{x}{4}=-8\Rightarrow x=-8.4=-32\)
\(\frac{y}{7}=-8\Rightarrow y=-8.7=-56\)
lam ban nha