Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
105 \(⋮\)x => x\(\in\)Ư(105)
126 \(⋮\)x => x\(\in\)Ư(126)
Suy ra x\(\in\)ƯC(105;126) = Ư(21)={1;3;7;21)
mà x>10
nên x=21
vì x chia hết cho 18,x chia hết cho 48
nên x thuộc BC(18,48)
ta có 18=2x3 mũ 2
48=2 mũ 4x3
suy ra BCNN(18,48)=2 mũ 4x 3 mũ 2=144
suy ra BC(18,48)=B(144)={0;144;288;...}
mà x thuộc BC(18,48)và 100<x<200
suy ra x=144
vậy x=144
a) x=-2
b) x=12; x=-2
c) x=12; x=-6
Lắm phần c,d , b quá
15 chia hết cho 2x+1 thì x= 1, x=4 và x=7 (nếu cả số âm nữa thì tự tìm nhé)
10 chia hết cho 3x+1 thì x=0, x=3 (nếu cả số âm nữa thì tự tìm nhé)
(7-x)-(25+7)=25 thì x=-36
6 chi hết cho x-1 thì x=2: x=3: x=4: x=7 (nếu cả số âm nữa thì tự tìm nhé)
5 chia hết cho x+1 thì x=0; x=4 (nếu cả số âm nữa thì tự tìm nhé)
e) x=0: x=1: x=3: x=9
f) x=1
g) x=0: x=2; x=4; x=14
z) x=0: x=1: x=4: x=9
a) x=7a-1 (a thuộc tập N*)
b) x=13b-9 (b thuộc tập N*)
vì 113 chia 7 dư 1, chia 13 dư 9 nên viết vậy là dạng rút gọn của tất cả các số x cần tìm.
k cho mình nha. thank.
Bài 3:
a: \(3^x=243\)
nên \(3^x=3^5\)
hay x=5
b: \(x^5=32\)
nên \(x^5=2^5\)
hay x=2
c: \(x^6=729\)
\(\Leftrightarrow x^2=9\)
=>x=3 hoặc x=-3
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
a, \(x\in\){ x chia hết cho 7 - 1 }