K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+5x-10=3x^2-12x-5x+20\)

\(\Leftrightarrow-2x-22+17x-20=0\)

\(\Leftrightarrow15x=42\)

hay \(x=\dfrac{14}{5}\)

https://i.imgur.com/NftyOSo.jpg
https://i.imgur.com/lNuNLji.jpg
11 tháng 9 2019

\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)

\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)

\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)

11 tháng 9 2019

\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)

\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)

\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)

\(\Leftrightarrow4x^2+6x-51=0\)

\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)

12 tháng 2 2016

a/ (2x2 + 3x - 1)2 - 4(2x2 + 3x + 3) + 20 = 0

Đặt a = 2x2 + 3x - 1 , ta đc:

a2 - 4.(a + 4) + 20 = 0

=> a2 - 4a - 16 + 20 = 0

=> a2 - 4a + 4 = 0

=> (a - 2)2 = 0 => a = 2

Với a = 2 => 2x2 + 3x - 1 = 2 => 2x2 + 3x - 3 = 0 

Có : \(\Delta=3^2-4.2.\left(-3\right)=33\Rightarrow\sqrt{\Delta}=\sqrt{33}\)

\(\Rightarrow x_1=\frac{-3+\sqrt{33}}{4};x_2=\frac{-3-\sqrt{33}}{4}\)

Vậy pt có 2 nghiệm như trên 

12 tháng 2 2016

b, c có 2 cách làm lận, bạn thích cách nào

14 tháng 5 2016

a) <=> \(2x^2-8x+3x-12+x^2-7x+10=3x^2-5x-12x+20\)

<=> \(2x^2-8x+3x-12+x^2-7x+10-3x^2+5x+12x-20=0\)

<=> \(5x-22=0\)

<=> \(5x=22\)

<=> \(x=\frac{22}{5}\)

b) <=> \(24x^2-9x+16x-6-4x^2-7x-16x-28=10x^2+5x-2x-1\)

<=> \(24x^2-9x+16x-6-4x^2-7x-16x-28-10x^2-5x+2x+1=0\)

<=> \(10x^2-19x-33=0\)

<=> \(10x^2-30x+11x-33=0\)

<=> \(10x\left(x-3\right)+11\left(x-3\right)=0\)

<=> \(\left(x-3\right)\left(10x+11\right)=0\)

<=> \(x=3;x=-\frac{11}{10}\)

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

a) Ta có: \(\left(x-1\right)\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\cdot3\cdot\left(x-2\right)=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: x∈{1;2}

b) Ta có: \(\left(2x+5\right)\left(1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-5}{2};\frac{1}{3}\right\}\)

c) Ta có: \(\left(x+1\right)\left(2x-3\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{3}{2};\frac{5}{3}\right\}\)

d) Ta có: \(6\left(x-2\right)\left(x-4\right)\left(1-7x\right)=0\)

Vì 6≠0

nên \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)

Vậy: \(x\in\left\{2;4;\frac{1}{7}\right\}\)

e) Ta có: \(\left(x+1\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

Vậy: x∈{-1;-2}

f) Ta có: \(\left(3x-2\right)^2\cdot\left(x+1\right)\cdot\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(3x-2\right)^2=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-1\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{2}{3};-1;2\right\}\)

g) Ta có: \(\left(5-x\right)^2\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(5-x\right)^2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5-x=0\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{1}{3}\right\}\)

h) Ta có: \(\left(14-2x\right)^2\cdot\left(3-x\right)\cdot\left(2x-4\right)=0\)

\(\Leftrightarrow4\left(7-x\right)^2\cdot\left(3-x\right)\cdot2\cdot\left(x-2\right)=0\)

\(\Leftrightarrow8\cdot\left(7-x\right)^2\cdot\left(3-x\right)\cdot\left(x-2\right)=0\)

Vì 8≠0

nên \(\left[{}\begin{matrix}\left(7-x\right)^2=0\\3-x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7-x=0\\x=3\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\\x=2\end{matrix}\right.\)

Vậy: x∈{7;3;2}

i) Ta có: \(\left(5x-6\right)^2\cdot\left(x+2\right)\cdot\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(5x-6\right)^2=0\\x+2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x-6=0\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=6\\x=-2\\x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{5}\\x=-2\\x=-10\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{6}{5};-2;-10\right\}\)

j) Ta có: \(\left(3x-3\right)^3\cdot\left(x+4\right)=0\)

\(\Leftrightarrow27\cdot\left(x-1\right)^3\cdot\left(x+4\right)=0\)

Vì 27≠0

nên \(\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vậy: x∈{1;-4}

chắc chắn đúng