K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

ta co 9(x^2-2x+1) +( y^2 -6y +9) + 2(z^2 + 2z +1) = 0

suy ra 9(x-1)^2 + (y - 3 )^2 + 3( z-1)^2 = 0

suy ra x-1=0 ; y-3 =0 ; z-1=0

suy ra x=1;y=3; z=1

14 tháng 12 2016

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)

5 tháng 10 2017

(9x2-18x+9)+(y2-6y+9)+2(z2+2z+1)=0\(\Rightarrow\)(3x-3)2+(y-3)2+2(z+1)2=0\(\Rightarrow\hept{\begin{cases}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

30 tháng 1 2019

Violympic toán 8

7 tháng 8 2018

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Rightarrow\left[\left(3x\right)^2-2.3x.3+9\right]+\left(y^2-2.y.3+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Rightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\left(3x-3\right)^2\ge0\) với mọi x

\(\left(y-3\right)^2\ge0\) với mọi y

\(2\left(z+1\right)^2\ge0\) với mọi z

\(\Rightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\) với mọi x, y, z

\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-3=0\\y-3=0\\\left(z+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(x-1\right)=0\\y=3\\z+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y=3\\z=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

Vậy x = 1 ; y = 3 ; z = -1

Ta có : 9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0 

<=> 9x2 - 18x + 9 + y2 - 6y + 9 + 2z2 + 4z + 2 = 0 

<=> 9(x2 - 2x + 1) + (y2 - 6y + 9) + 2(z2 + 2z + 1) = 0 

<=> 9(x - 1)2 + (y - 3)2 + 2(z + 1)2 = 0 (*)

Vì \(9\left(x-1\right)^2\ge0\forall x\in R\)

    \(\left(y-3\right)^2\ge0\forall y\in R\)

     \(2\left(z+1\right)^2\ge0\forall z\in R\)

Nên : pt (*) <=> \(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

Vậy pt có nhiệm (x;y;z) = (1;3;-1)

13 tháng 4 2018

k mik , mik chỉ cko 

30 tháng 3 2018

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow\left(3x-3\right)^2+\left(y-2\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)

Vì: \(\left(3x-3\right)^2+\left(y-2\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2\ge0\forall x,y,z\)

=> Dấu = xảy ra khi: \(\left\{{}\begin{matrix}3x-3=0\\y-2=0\\\sqrt{2}z+\sqrt{2}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=-1\end{matrix}\right.\)

Vậy.................

22 tháng 6 2015

9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2(z+1)2=0

=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

 

21 tháng 3 2018

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

Suy ra hoặc \(3x-3=0\Leftrightarrow x=1\)

            hoặc \(y-3=0\Leftrightarrow y=3\)

            hoặc \(z+1=0\Leftrightarrow z=-1\)