Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)
\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)
\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)
b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)
1) a) (x2 + y2 - 36)2 - 4x2y2
= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)
= [(x - y)2 - 36][(x + y)2 - 36]
= (x - y - 6)(x - y + 6)(x + y + 6)(x + y - 6)
b) (x2 + x)2 - 5(x2 + x) + 6
= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6
= (x2 + x)(x2 + x - 2) - 3(x2 + x - 2)
= (x2 + x - 3)(x2 + 2x - x - 2)
= (x2 + x - 3)(x - 1)(x + 2)
2) Đặt tính là đc
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
Vì f(x) chia hết cho (x-1)(x+2) nên f(x) = (x-1)(x+2).Q(x)
hay \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b=\left(x-1\right)\left(x+2\right).Q\left(x\right)\)
Suy ra : \(f\left(1\right)=2+a+3+4+b=0\Rightarrow a+b=-9\left(1\right)\)
\(f\left(-2\right)=32-8a+12-8+b=0\Rightarrow-8a+b=-36\left(2\right)\)
Từ (1) và (2) có hệ \(\begin{cases}a+b=-9\\-8a+b=-36\end{cases}\) \(\Leftrightarrow\begin{cases}a=3\\b=-12\end{cases}\)
Đa thức \(\left(x-1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy 1 và -2 là hai nghiệm của đa thức (x-1)(x+2)
Để đa thức \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)chia hết cho (x-1)(x+2) thì 1 và -2 là cũng hai nghiệm của đa thức
\(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)
Nếu x = -1 thì \(f\left(-1\right)=2-a+3-4+b=0\)
\(\Leftrightarrow a-b=1\)(1)
Nếu x = 2 thì \(f\left(2\right)=32+8a+12+8+b=0\)
\(\Leftrightarrow52+8a+b=0\)
\(\Leftrightarrow8a+b=-52\)(2)
Lấy (1) + (2), ta được: \(9a=-51\Leftrightarrow a=\frac{-17}{3}\)
\(\Rightarrow b=\frac{-17}{3}-1=\frac{-20}{3}\)
Vậy \(a=\frac{-17}{3};b=\frac{-20}{3}\)
cũng cuồng song joong ki của hậu duệ mặt trời à . chăm chỉ đọc ngôn tình nha bạn
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Ngọc Vĩ sao ko gọi ck, tớ lm j