Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-4\right)^2-36=0\)
\(\Leftrightarrow\left(x-4\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=6\\x-4=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy ...
\(4x^2-12x=-9\)
\(\Rightarrow\left(2x\right)^2-2.2x.3+3^2=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy ...
\(\left(x+8\right)^2=121\)
\(\Rightarrow\left[{}\begin{matrix}x+8=11\\x+8=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)
Vậy ...
a.(x-4)2 -36=0
⇔(x-4-6)(x-4+6)=0
⇔(x-10))(x+2)=0
✱x-10=0 => x=10
✱ x+2 =0 => x=-2
Vậy x=10 và x=-2
b) 4x2 -12 + 9 =0
⇔ (2x)2 -2.2x.3 + 32 = 0
⇔(2x-3)2 =0
⇔2x-3=0
⇔ x= \(\dfrac{3}{2}\)
c) (x+8)2 -121=0
⇔ (x+8)2 -112 =0
⇔ (x+8-11)(x+8+11) =0
⇔ (x-3) (x+19) =0
\(\begin{matrix}x-3=0\\x+19=0\end{matrix}\) ⇔ \(\begin{matrix}x=3\\x=-19\end{matrix}\)
a)x2 +5x =0
=>x.x +5x =0
=> x.(5+x) =0
=>Hoặc 5+x =0 =>x= -5
Hoặc x= 0
Vậy x=-5 ; x=0
a)x2-20-x=0
<=>(x2-5x)+(4x-20)=0
<=>x(x-5)+4(x-5)=0
<=>(x-5)(x+4)=0
<=>x-5=0 hoặc x+4=0
<=>x=5 hoặc x=-4
b)(2x+3)2-(4x2-9)=0
<=>(2x+3)(2x+3)-(2x-3)(2x+3)=0
<=>(2x+3)(2x+3-2x+3)=0
<=>(2x+3).6=0
<=>2x+3=0
<=>2x=-3
<=>x=-1,5
c)(2x2+5x+3):(x+1)=4x-5
<=>2x2+5x+3=(4x-5)(x+1)
<=>2x2+5x+3=4x2-x-5
<=>4x2-x-5-2x2-5x-3=0
<=>2x2-6x-8=0
<=>x2-3x-4=0
<=>(x2-4x)+(x-4)=0
<=>x(x-4)+(x-4)=0
<=>(x-4)(x+1)=0
<=>x+1=0 hoặc x-4=0
<=>x=-1 hoặc x=4
a) \(x\left(x-2\right)-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(x^2+12x-13=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) \(4x^2-4x=8\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) \(x^2-6x=1\)
\(\Leftrightarrow\left(x-3\right)^2=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
a) x( x - 2 ) - 7x + 14 = 0
<=> x( x - 2 ) - 7( x - 2 ) = 0
<=> ( x - 2 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
b) x2( x - 3 ) + 12 - 4x = 0
<=> x2( x - 3 ) - 4( x - 3 ) = 0
<=> ( x - 3 )( x2 - 4 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) x2 + 12x - 13 = 0
<=> x2 - x + 13x - 13 = 0
<=> x( x - 1 ) + 13( x - 1 ) = 0
<=> ( x - 1 )( x + 13 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)
d) 4x2 - 4x = 8
<=> 4( x2 - x ) = 8
<=> x2 - x = 2
<=> x2 - x - 2 = 0
<=> x2 + x - 2x - 2 = 0
<=> x( x + 1 ) - 2( x + 1 ) = 0
<=> ( x + 1 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
e) x2 - 6x = 1
<=> x2 - 6x + 9 = 1 + 9
<=> ( x - 3 )2 = 10
<=> ( x - 3 )2 = ( ±√10 )2
<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)
a) (x - 4)2 - 36 = 0
=> (x - 4)2 = 36
=> x - 4 = 6 hoặc x - 4 = -6
=> x = 10 hoặc x = -2
b) hình như sai đề bn ạ
c) x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 5)(x - 4) = 0
=> x - 5 = 0 hoặc x - 4 = 0
=> x = 5 hoặc x = 4